RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2016, Vol. 25 >> Issue (12): 1824-1831.doi: 10.11870/cjlyzyyhj201612005

Previous Articles     Next Articles

CARBON EMISSION EFFICIENCY OF SPATIAL ASSOCIATION AND ITS CONVERGENCE OF LAND USE IN WUHAN URBAN AGGLOMERATION

CUI Wei1,3, MIAO Jian-jun2, ZOU Wei3   

  1. 1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013, China;
    2. Nanjing University of Aeronautics & Astronautics, Nanjing 211100, China;
    3. School of Public Administration, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
  • Received:2016-04-21 Revised:2016-09-12 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation of China(71173112、71503105、171401051);National Social Science Fund of China(16BGL210);The Ministry of Education Project(15YJA790046、15YJA630017);Scientific Research Project of Senior Technical Personnel of Jiangsu University(15JDG004);Natural Science Foundation of Higher Education of Jiangsu(No.15KJD610001)

Abstract: This paper provided carbon reduction program for Wuhan agglomeration by measuring land-use associated carbon emission efficiency and its convergence. This paper analyzed emission efficiency, technical progress and technical efficiency of this city group. σ and β convergences were calculated to analyze the carbon emission efficiency. The results showed that the land using carbon emission efficiency rose before 2010, then declined afterward. The underlying cause is that, although the technological progress is continuously rising, it cannot compensate for the reduction of technical efficiency. Wuhan city circle could be divided into three categories according to the type of urban land. The results showed that they have suffered different degrees of convergence. At the end, a carbon reduction program was proposed based on the above analysis.

Key words: carbon efficiency, convergence analysis, Malmquist index, bootstrap technique, Wuhan agglomeration

CLC Number: 

  • F301.2
[1] WATSON R T, NOBLE I R, BOLIN B, et al. Land use, land-use change, and forestry:a special report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2000.
[2] 史新峰. 气候变化与低碳经济[M]. 北京:中国水利水电出版社, 2010.
[3] VÁZQUEZ-ROWE I, MARVUGLIA A, REGE S, et al. Applying consequential LCA to support energy policy:land use change effects of bioenergy production[J]. Science of the Total Environment, 2014, 472:78-89.
[4] 崔玮, 苗建军, 杨晶. 基于碳排放约束的城市非农用地生态效率及影响因素分析[J]. 中国人口·资源与环境, 2013, 23(7):63-69.[CUI W, MIAO J J, YANG J. Urban non-agricultural eco-efficiency and affecting factors based on carbon emission[J]. China Population, Resources and Environment, 2013, 23(7):63-69.]
[5] 崔玮, 苗建军, 雷娜. 碳排放视角下城市非农用地利用绩效的空间差异分析[J]. 中国土地科学, 2013, 27(8):33-38.[CUI W, MIAO J J, LEI N. Analysis on spatial variation of the performance of urban non-agricultural land use in terms of carbon emission[J]. China Land Sciences, 2013, 27(8):33-38.]
[6] DEILMANN C, LEHMANN I, REIßMANN D, et al. Data envelopment analysis of cities-investigation of the ecological and economic efficiency of cities using a benchmarking concept from production management[J]. Ecological Indicators, 2016, 67:798-806.
[7] WANKE P, BARROS C P, FIGUEIREDO O. Efficiency and productive slacks in urban transportation modes:A two-stage SDEA-Beta Regression approach[J]. Utilities Policy, 2016, 41:31-39.
[8] RINANTI A, DEWI K, KARDENA E, et al. Biotechnology carbon capture and storage (CCS) by mix-culture green microalgae to enhancing carbon uptake rate and carbon dioxide removal efficiency with variation aeration rates in closed system photobioreactor[J]. Jurnal Teknologi, 2014, 69(6):93-99.
[9] RINANTI A, DEWI K, KARDENA E, et al. Biotechnology carbon capture and storage (CCS) by mix-culture green microalgae to enhancing carbon uptake rate and carbon dioxide removal efficiency with variation aeration rates in closed system photobioreactor[J]. Jurnal Teknologi, 2014, 69(6):93-99.
[10] 赖力, 黄贤金. 中国土地利用的碳排放效应研究[M]. 南京:南京大学出版社, 2011.
[11] KIVIMAA P, VIRKAMÄKI V. Policy mixes, policy interplay and low carbon transitions:the case of passenger transport in Finland[J]. Environmental Policy and Governance, 2014, 24(1):28-41.
[12] WENNERSTEN R, SUN Q, LI H L. The future potential for Carbon Capture and Storage in climate change mitigation-an overview from perspectives of technology, economy and risk[J]. Journal of Cleaner Production, 2015, 103:724-736.
[13] MARTINS L D, EUGENIO F C, RODRIGUES W N, et al. A bitter cup:the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions[J]. Plant Soil and Environment, 2015, 61(12):544-552.
[14] 杨宏玉. 区域经济低碳转型与土地利用结构优化研究——以重庆市为例[D]. 重庆:西南大学硕士学位论文, 2011.[YANG H Y. A research on the relationship between regional economic transition to low-carbon and land use structure optimization——a case study of Chongqing city[D]. Chongqing:Master Dissertation of Southwest University, 2011.]
[15] HINTZ M, LENNARTZ-SASSINEK S, LIU S F, et al. Quantification of land-surface heterogeneity via entropy spectrum method[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(14):8764-8777.
[16] 余德贵, 吴群. 基于碳排放约束的土地利用结构优化模型研究及其应用[J]. 长江流域资源与环境, 2011, 20(8):911-917.[YU D G, WU Q. Application of the model of land used structure optimization based on low-carbon limited[J]. Resources and Environment in the Yangtze Basin, 2011, 20(8):911-917.]
[17] 杨欣, 蔡银莺, 张安录. 武汉城市圈碳排放的时空格局及影响因素分解研究——基于2001~2009年市级面板数据的实证[J]. 长江流域资源与环境, 2013, 22(11):1389-1396.[YANG X, CAI Y Y, ZHANG A L. Spatial-temporal characteristics and affecting factors decomposition of carbon emission in Wuhan urban circle from 2001 to 2009[J]. Resources and Environment in the Yangtze Basin, 2013, 22(11):1389-1396.]
[18] 余光英, 员开奇. 武汉城市圈土地利用碳排放效率评价研究[J]. 资源开发与市场, 2014, 30(7):801-805, 816.[YU G Y, YUAN K Q. Study on land-use carbon emissions efficiency evaluation of Wuhan urban agglomeration[J]. Resource Development & Market, 2014, 30(7):801-805.]
[19] 董捷, 张雪, 张安录. 武汉城市圈农地城市流转效率测度——基于碳排放的视角[J]. 江汉论坛, 2015(8):23-29.[DONG J, ZHANG X, ZHANG A L. Land conversion efficiency measurement of Wuhan city circle base of carbon emissions[J]. Jianghan Tribune, 2015(8):23-29.]
[20] 雷辉, 张娟. 我国资本存量的重估及比较分析:1952-2012[J]. 经济问题探索, 2014(7):16-21.[LEI H, ZHANG J. Revaluation and comparative analysis of the capital stock:1952-2012[J]. Inquiry into Economic Issues, 2014(7):16-21.]
[21] 张梅, 赖力, 黄贤金, 等. 中国区域土地利用类型转变的碳排放强度研究[J]. 资源科学, 2013, 35(4):792-799.[ZHANG M, LAI L, HUANG X J, et al. The carbon emission intensity of land use conversion in different regions of China[J]. Resources Science, 2013, 35(4):792-799.]
[22] 张俊峰, 张安录, 董捷. 武汉城市圈土地利用碳排放效应分析及因素分解研究[J]. 长江流域资源与环境, 2014, 23(5):595-602.[ZHANG J F, ZHANG A L, DONG J. Carbon emission effect of land use and influencing factors decomposition of carbon emission in Wuhan urban agglomeration[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5):595-602.]
[23] MATIN R K, AMIN G R, EMROUZNEJAD A. A modified semi-oriented radial measure for target setting with negative data[J]. Measurement, 2014, 54:152-158.
[24] SIMAR L, WILSON P W. Sensitivity analysis of efficiency scores:how to bootstrap in nonparametric frontier models[J]. Management Science, 1998, 44(1):49-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PENG Chang-qing,FENG Jin-fei,BIAN Xin-min. OPTIMIZATION OF SPATIAL DISTRIBUTION IN PADDY FIELD CROPPING SYSTEM BASED ON GIS AND GENE ALGORITHM IN THE SCALE OF COUNTY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(1): 66 -70 .
[2] TANG Qi, YU Xiao-gan. PROBLEMS IN THE ECONOMIC SUSTAINABLE DEVELOPMENT IN THE YANGTZE RIVER DELTA[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(3): 269 -273 .
[3] LI Na,XU You-peng,CHEN Shuang. INFLUENCE OF URBANIZATION ON PRECIPITATION IN SUZHOU CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(3): 335 -339 .
[4] WANG Haiyun, GAO Taizhong,GAO Jing,HUANG Qunxian. WATER RESOURCES OPTIMAL ALLOCATION IN THE MIDDLE LINE OF SOUTH TO NORTH WATER TRANSFER PROJECT USING AHP LP[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2007, 16(5): 588 .
[5] ZHANG Yan, ZHANG Hong, PENG Buzhuo. EVALUATING COORDINATION AMONG LAND USE, NATURAL ENVIRONMENT AND ECONOMIC DEVELOPMENT[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(4): 529 .
[6] SUN Weixia, ZHAO Yongcun, HUANG Biao, LIAO Jingjing, WANG Zhigang, WANG Hongjie. SPATIAL VARIABILITY OF SELENIUM IN SOIL ENVIRONMENT AND  ITS CORRELATION WITH HUMAN HEALTH IN THE YANGTZE RIVER DELTA OF CHINA[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(1): 113 .
[7] HUANG Xi-sheng,TANG Shao-jun. MECHANISMS FOR THE ENFORCEMENT OF ENVIRONMENTAL SAFETY AND SECURITY PROTECTION LAWS IN THETHREE GORGES RESERVOIR AREA[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2004, 13(6): 611 -615 .
[8] ZHANG Xiao-fei,LIN Yu-suo, YU Fei,LI Bo. POLLUTION OF HEAVY METALS IN URBAN SOILS OF TYPICAL INDUSTRIAL[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(4): 512 -515 .
[9] LIAO Fuqiang, LIU Ying,YE Muya,ZHENG Lin. VULNERABILITY ASSESSMENT AND PRESSURE ANALYSIS ON ECOLOGICAL ENVIRONMENT OF TYPICAL WETLAND IN POYANG LAKE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(1): 133 .
[10] ZHAO Yao-yang, PU Li-jie, HU Xiao-tian. APPLICATION OF BP NEURAL NETWORK IN THE PREDICTION OF URBAN CONSTRUCTION LAND AREA——A CASE STUDY OF JIANGSU PROVINCE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(1): 14 -18 .