RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2018, Vol. 27 >> Issue (08): 1809-.doi: 10.11870/cjlyzyyhj201808017

Previous Articles     Next Articles

Soil Hydrological Function of Different Altitudinal #br# Hillslopes of the Three Gorges Mountain and Its Impact Factors

 
LI Xiangfu1,2, LIU Muxing1,2, YI Jun1,2, WU Siping1,2, YANG Ye1,2, LOU Shulan1,2
  

  1.  
    (1. Key Laboratory for Geographical Process Analysis & Simulation, Hubei Province, Wuhan 430079, China;
    2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)
  • Online:2018-08-20 Published:2018-11-09

Abstract:

Soil permeability and water holding capacity are important soil hydraulic properties, which are also the basis of some hydrological functions, such as runoff regulation, and soil and water conservation. Four sampling locations in the head region of the Three Gorges Reservoir Area were selected to collect the soil samples, which contained the brown soil covered with subalpine temperate coniferous forest (BF), the yellow brown soil covered with deciduous coniferous broadleaved mixed shrubs (YBF), the yellow brown soil covered with tea tree (YBT), and the yellow soil covered with lowmountain warm coniferous forest (YF).Soil saturated hydraulic conductivities (Ks), soil water retention curves and physiochemical properties of these soil samples were analyzed in the lab, and the soil hydrological parameters of soil infiltration, water holding and water storage were quantified. Furthermore, the relationships between the hydrological parameters and soil physiochemical properties were analyzed. The results indicated that Ks ranged from 0.06 to 14.78 mm/min for all the soil samples. The highest Ks was observed from BF and YBF (i.e., 7.15~14.78 mm/min), followed by YF (1.39 mm/min), and YBT (1.17 mm/min).Significant differences of the saturated soil water content, capillary water content and field water capacity were observed among the four sampling locations, but little difference of wilting water content was identified. The soil properties of different horizons for the same soil profile was evaluated. With increasing soil depth, the saturated water content decreased, whereas the capillary water content and field capacity increased. Significant differences of the total water capacity were identified among the four sampling locations, and the total water capacity increased as the altitude increased. Correlation analysis between soil water parameters and soil properties indicated a significantly positive correlation between Ks and soil total porosity, and a significantly negative correlation between Ks and soil bulk density. There were significantly positive correlations between the saturated water content/capillary water content/field water capacity and total porosity/clay content, but significantly negative correlations with the soil bulk density. In addition, a significantly positive correlation was observed between the saturated water content and root density, whereas significantly negative correlations between capillary water content/field water capacity and the sand content were identified. Compared to YBT and YF, BF and YBF were characterized by higher infiltration rate and water holding capacity, behaving the better soil hydrological functions of runoff regulation and water conservation.
Key words:mountain soils; soil porosity; saturated hydraulic conductivity; water holding capacity; Three Gorges Reservoir Area

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Junxiong,;XU Zongxue. SPATIALTEMPORAL CHARACTERISTICS OF LONGTERM TRENDS FOR CLIMATE CHANGE IN THE TAIHU BASIN DURING 1954 TO 2006[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(1): 33 .
[2] NIE Na,YU Kunxiang. ENVIRONMENTAL AND ECONOMIC ACCOUNTS THOUGHTS ON TOURIST INDUSTRY IN CHINESE WORLD NATURAL HERITAGE SITE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(2): 121 .
[3] SONG Yuzhi,QIN Boqiang,GAO Guang. REMOVAL EFFECTS OF PERIPHYTON ON NITROGEN AND PHOSPHORUS IN THE EUTROPHIC WATER BODY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(2): 180 .
[4] XU Feng, QI Shihua, GAO Yuan, XING Xinli. VERTICAL DISTRIBUTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS OF REPRESENTATIVE SPOT IN MIANYANG CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(2): 192 .
[5] YANG Gui-fang, PENG Hong-xia, CHEN Zhong-yuan, LI Chang-an, HUANG Jun-hua, HU Chao-yong. PALEOCLIMATIC IMPLICATIONS OF LANZHOU AND JIANGHAN PLAIN: A CLIMATE PROXY STUDY OF ORGANIC CARBON ISOTOPE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(4): 486 -490 .
[6] XIE Xiao-nan,XU Peng-zhu, QIN Bo-qiang. ANALYSIS ON PROBLEMS AND COUNTERMEASURES OFLANDSURFACE SUBSIDENCE IN TAILAKE BASIN[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(1): 125 -131 .
[7] LIU Jian,CHEN Xing,PENG En-zhi,ZHOU Xue-dong. INFLUENCE OF CLIMATE CHANGE ON THE ELECTRIC POWER CONSUMPTION OF URBAN SYSTEM IN JIANGSU PROVINCE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(5): 546 -550 .
[8] PENG Chang-qing,FENG Jin-fei,BIAN Xin-min. OPTIMIZATION OF SPATIAL DISTRIBUTION IN PADDY FIELD CROPPING SYSTEM BASED ON GIS AND GENE ALGORITHM IN THE SCALE OF COUNTY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(1): 66 -70 .
[9] LIU Ai-xia,LIU Zheng-jun,WANG Jing. MAPPING OF NATURAL FOREST IN CHINA BASED ON PRINCIPAL COMPONENT TRANSFORM AND NEURAL NETWORK CLASSIFICATION[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(1): 19 -24 .
[10] WANG Yurong| LI〓Jia, LI Kefeng| RUI Jianliang. ECOLOGICAL WATER DEMAND OF REDUCING REACH OF YALONG RIVER OWNSTREAM OF JINPING WATERPOWER STATION STAGE II[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2007, 16(1): 81 -85 .