RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2024, Vol. 33 >> Issue (6): 1197-1212.doi: 10.11870/cjlyzyyhj202406006

Previous Articles     Next Articles

Spatiotemporal Evolution of Urban Network in China from the Perspective of High-Speed Rail Flow

QIU Yu1,2, ZHANG Wei-guo2,3   

  1. (1. College of Management Science,Chengdu University of Technology,Chengdu 610059,China; 2. College of Economics and
     Management, Southwest University, Chongqing 400715,China; 3. Collaborative Innovation Center for Non-Public
     Economic Development and Poverty Alleviation in West China, Chongqing 400715, China)
  • Online:2024-06-20 Published:2024-06-26

Abstract: Transportation serves as the vanguard of China's modernization, with high-speed rail standing as a significant emblem of transportation modernization. The spatial flow of high-speed rail has emerged as a crucial perspective for investigating urban and regional spatial structures. Utilizing GIS spatial analysis and social network analysis methods based on national railway passenger train schedule data from 2009 to 2020, focusing on 369 administrative units in China, this study explored the spatiotemporal evolution characteristics of urban network intensity and structure, and examined the developmental disparities within and between regions. The following were the primary conclusions: (1) The intensity of urban network associations in China hadexperienced a rapid surge, with the hierarchical structure transitioning from quantity-oriented to quality-driven. Moreover, cities in central and western China were consistently ascending to the highest echelon of urban centers. (2) The network density and core-periphery structure of the urban network were in spatiotemporal heterogeneity. The urban network in coastal areas had higher correlation strength and a more hierarchical structure, and the urban network in the central region exhibited moderate correlation intensity, but operated on a larger scale. The southwest and northwest regions experienced a delayed period of high-speed rail (HSR) operation; however, their urban networks developed rapidly. Conversely, the northeastern region was the earliest HSR operation but witnessed a slower development of urban network. (3) The number of city pairs with cross-regional connections was increasing, and the intensity of cross-regional city network connections continued to increase, however was still dominated by low-level connections. The region with the highest concentration of cross-regional connections had shifted from the eastern coastal area to the middle reaches of the Yangtze River. (4) The centrality index exhibited an upward trajectory. Cities with higher degrees of centrality were predominantly concentrated along the Beijing-Shanghai, Beijing-Harbin-Beijing-Hong Kong-Macao Road and Bridge, as well as the Shanghai-Kunming passageways. Conversely, cities with higher centrality primarily consisted of regional central cities with elevated administrative levels.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Maolan, HU Chunhua, ZHOU Wenbin,. CONCENTRATION VARIATIONS OF N AND P IN POYANG LAKE DURING HIGH WATER PERIOD WITH ANALYSIS ON THEIR SOURCES [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(1): 138 .
[2] GUO Zheng, , DONG Ping, , LU Yuqi, , , HUANG Qunfang, MA Yinyi. Analysis on the Evolution and Influence Factors of Yangtze River delta container port system[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1340 .
[3] LAN Xi, LIU Xiaoqiong, GUO Yan, CHEN Kunlun . Comprehensive Evaluation of Urban Water Environmental Carrying Capacity in Wuhan Under the Context of the Yangtze River Economic Belt Strategic[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1345 .
[4] LUO Nengsheng, WANG Yuze, PENG Yu, LI Jianming. EcoEfficiency of Urban Agglomeration in the Middle Yangtze River Basin: Spatial Analysis and Synergetic Promotion Mechanism[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1349 .
[5] LIU Gang, , LIU Kunlin, WANG Weiqian, ZHAO Shuang. Analysis of Immigrants’ Satisfaction Degree in Water Quality#br# —— Empirical Research of Ordinal Logistic Regression[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1355 .
[6] Xiaofeng, , LIU Dingshuo, . Coupling Mechanism of County Traffic Accessibility and Spatial Poverty Based on 3D Theory and SEM: A Case Study in Mountains Border Regions of Western Yunnan[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1360 .
[7] ZHANG Dapeng, CAO Weidong, , YAO Zhaozhao, YUE Yang, REN Yawen. Study on the Distribution Characteristics and Evolution of Logistics Enterprises in Shanghai Metropolitan Area[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1365 .
[8] SHE Ying, , LIU Yaobing. Historical Context and Enlightenment of Domestic and Foreign Green Development Regime[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1370 .
[9] HOU Wenjia, CHEN Changqing, QIAO Hui, SUN Xinsu, ZHOU Shudong. TemporalSpatial Characteristics of Rape Freezing Injury in the Lower Reaches of the Yangtze River During 1980-2009[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1375 .
[10] YAO Lin, SHEN Jing, WEN Xinlong, GAO Chao. Impact of Various Parameterization Schemes in WRF Model on Wind Simulation at the mountain Wind Power Station of Jiangxi Province[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2018, 27(07): 1380 .