长江流域资源与环境 >> 2012, Vol. 21 >> Issue (9): 1123-.

• 生态环境 • 上一篇    下一篇

长江上游地区土壤可蚀性空间分异特征

宋春风 |陶和平|刘斌涛|史展| 郭 兵|华娟   

  1. (1.中国科学院水利部成都山地灾害与环境研究所|四川 成都610041;2.中国科学院研究生院|北京100049)
  • 出版日期:2012-09-20

SPATIAL DISTRIBUTION CHARACTERISTICS OF SOIL ERODIBILITY K VALUE IN THE UPPER YANGTZE RIVER

SONG Chunfeng1|2, TAO Heping1, LIU Bintao1, SHI Zhan1|2, GUO Bing1|2, HUA Juan1   

  1. (1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences| Chengdu 610041, China;
    2.Graduate University of the Chinese Academy of Sciences, Beijing 100049|China)
  • Online:2012-09-20

摘要:

研究土壤可蚀性K值有助于宏观判断和定量分析长江上游地区土壤侵蚀的空间分布特征。利用第二次土壤普查资料建立了长江上游土壤的理化性质数据库,通过三次样条插值对土壤质地进行转换,采用EPIC模型计算出各土种的可蚀性K值,采用面积加权的方法,求得各亚类的可蚀性K值,将其链接至长江上游土壤图的属性表,得到土壤可蚀性空间分布图,进而探讨土壤可蚀性的分布特征。结果表明:长江上游土壤可蚀性以较低可蚀性、中等可蚀性和较高可蚀性为主,横断山区、云贵高原和三峡库区区域土壤可蚀性明显高于四川盆地地区;高可蚀性土壤主要分布在嘉陵江上游和横断山区的低海拔谷地;平均K值为0239 0,最大值041,最小值007土壤可蚀性高低与土壤侵蚀强度、海拔高度和坡度在空间分布上具有一定的规律性

Abstract:

Soil erodibility (the K factor in the Universal Soil Loss Equation,USLE) is an important index to measure soil susceptibility to water erosion,and an essential parameter needed for soil erosion evaluation and soil erosion prediction.Based on the second soil survey data,we established a database of soil properties of the upper reaches of the Yangtze River.We used cubic spline interpolation to convert the soil texture,the EPIC model to calculate the soil species erodibility, and the areaweighted method to obtain the erodibility values of subclass.After linking the K value of every soil subclass to the soil map,we got the spatial distribution characteristics of soil erodibility.The results showed that the mean value of soil erodibility was 0239 0,and the study area with lower erodibility,moderate erodibility and higher erodibility accounts for the main part,occupied 2796%,3261 % and 2720%,respectively.Soil erodibility of the Hengduan Mountains,the YunnanGuizhou Plateau and the Three Gorges Reservoir area was significantly higher than Sichuan Basin.High erodibility soils mainly located in the upper Jialing River and the valleys of the HengDuan Mountains.The average value was 0239 0,the maximum value was 041 and the minimum value was 007. K value had a certain regularity with soil erosion intensity,elevation gradient and slope gradient

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[4] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[5] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[8] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[9] 姜加虎, 黄 群, 孙占东. 长江中下游湖泊保护和管理的若干建议[J]. 长江流域资源与环境, 2005, 14(1): 40 -43 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .