长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 470-475.doi: 10.11870/cjlyzyyhj201603014

• 生态环境 • 上一篇    下一篇

庐山不同森林植被类型土壤碳库管理指数评价

于法展1,2, 张忠启2, 陈龙乾1, 沈正平2   

  1. 1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116;
    2. 江苏师范大学城市与环境学院, 江苏 徐州 221116
  • 收稿日期:2015-07-07 修回日期:2015-10-22 出版日期:2016-03-20
  • 通讯作者: 陈龙乾 E-mail:chenlq@cumt.edu.cn
  • 作者简介:于法展(1972~),男,副教授,博士研究生,主要从事土地资源管理研究. E-mail: yufazhan@126.com
  • 基金资助:
    国家自然科学基金项目(41201213);江苏高校优势学科建设工程资助项目(SZBF2011-6-B35)

EVALUATION OF CARBON POOL MANAGEMENT INDEX OF DIFFERENT FOREST TYPES IN LUSHAN

YU Fa-zhan1,2, ZHANG Zhong-qi2, CHEN Long-qian1, SHEN Zheng-ping2   

  1. 1. China University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou 221116, China;
    2. College of Urban and Environmental Sciences, Jiangsu Normal University, Xuzhou 221116, China
  • Received:2015-07-07 Revised:2015-10-22 Online:2016-03-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No. 41201213);the Priority Academic Program Development of Jiangsu Higher Education Institutions (SEBF 2011-6-B35)

摘要: 土壤碳库管理指数(CPMI)是表征土壤碳库变化的一个重要量化指标,能够反映土壤的碳库变化和碳库质量。选取庐山8种森林植被类型土壤为研究对象,对其土壤有机碳库特征及碳库管理指数进行系统研究。结论表明:(1)土壤有机碳(SOC)主要分布于0~20 cm土层中,随着土层深度增加,不同森林植被类型下SOC含量急剧下降;在0~60 cm土层中,不同森林植被类型下SOC含量的平均值排序为:马尾松林 < 常绿阔叶林 < 灌丛 < 针阔混交林 < 常绿-落叶混交林 < 黄山松林 < 落叶阔叶林 < 竹林。(2)不同森林植被类型下活性有机碳(ASOC)含量为0.24~0.57 g·kg-1,总有机碳(TOC)含量为9.72~14.74 g·kg-1,土壤碳库指数(CPI)为1.63~2.48,碳库活度(A)为0.019~0.062,碳库活度指数(AI)为0.388~1.265。不同森林植被类型下ASOC含量排序:落叶阔叶林 < 黄山松林 < 常绿-落叶阔叶混交林 < 灌丛 < 针阔混交林 < 常绿阔叶林 < 竹林 < 马尾松林;不同森林植被类型下ASOC/TOC(%)排序:落叶阔叶林 < 黄山松林 < 常绿-落叶阔叶混交林 < 竹林 < 灌丛 < 针阔混交林 < 常绿阔叶林 < 马尾松林;不同森林植被类型下CPMI排序为:落叶阔叶林 < 黄山松林 < 常绿-落叶阔叶混交林 < 灌丛 < 针阔混交林 < 常绿阔叶林 < 竹林 < 马尾松林。

关键词: 碳库管理指数, 土壤碳库活度, 森林植被类型, 庐山

Abstract: Carbon Pool Management Index (CPMI) is deemed to be an important parameter to describe carbon cycle in soil ecosystem, and can reflect the change of carbon pool size well. By selecting 8 sampling plot of different forest types and a contrasted bare slop plot as study objects in the Lushan scenic area, the organic carbon pool characters and management indices were analyzed systematically. Some results were obtained as the follows. First, the soil organic carbon (SOC) was mainly distributed in the soil surface layer (0-20 cm). With the increase of soil depth, the SOC contents of the soil samples under various forest types all decrease sharply. In the depth of 0-60 cm, the average SOC contents increased in the following order: Pinus massoniana forest < evergreen broad-leaved forest < vegetation < coniferous and broad-leaved mixed forest < evergreen and deciduous mixed forest < Pinus taiwanensishayata forest < deciduous broad-leaved forest < bamboo forest. Moreover, the sequence of the average ASOC contents under different forest types and contrasted bare slop is deciduous broad-leaved forest < Pinus taiwanensishayata forest < evergreen and deciduous broad-leaved mixed forest < vegetation < coniferous and broad-leaved mixed forest < evergreen broad-leaved forest < bamboo forest < Pinus massoniana forest. The percentages of SOC under different forest types increase in the following order: deciduous broadleaved forest < Pinus taiwanensishayataforest < evergreen and deciduous broad-leaved mixed forest < bamboo forest < vegetation < coniferous and broad-leaved mixed forest < evergreen broad-leaved forest < Pinus massoniana forest. Furthermore, under various forest types, the ASOC contents are 0.24-0.57 g·kg-1, and the TOC contents are 9.72-14.74 g·kg-1. At the same time, the CPI contents are 1.63-2.48, and the A contents are 0.019-0.062, while the AI contents are 0.388-1.265. The CMPI under various forest types increase in the following order: deciduous broad-leaved forest < Pinus taiwanensishayataforest < evergreen and deciduous broad-leaved mixed forest < vegetation < coniferous and broad-leaved mixed forest < evergreen broad-leaved forest < bamboo forest < Pinus massoniana forest.

Key words: carbon pool management index, carbon pool activity, forest types, Lushan

中图分类号: 

  • S159.2
[1] 罗友进, 王子芳, 高明, 等. 不同耕作制度对紫色水稻土活性有机质及碳库管理指数的影响[J]. 水土保持学报, 2007, 21(5):55-58, 81.[LUO Y J, WANG Z F, GAO M, et al. Effects of different tillage systems on soil labile organic matter and carbon management index of purple paddy soil[J]. Journal of Soil and Water Conservation, 2007, 21(5):55-55, 81.]
[2] 徐秋芳. 森林土壤活性有机碳库的研究[D]. 杭州:浙江大学博士学位论文, 2003.[XU Q F. Study on labile organic carbon pool in forest soils[D]. Hangzhou:Doctor Dissertation of Zhejiang University, 2003.]
[3] 王纪杰. 桉树人工林土壤质量变化特征[D]. 南京:南京林业大学博士学位论文, 2011.[WANG J J. Variation characteristics of soil quality in eucalyptus plantations[D]. Nanjing:Doctor Dissertation of Nanjing Forestry University, 2011.]
[4] 陈亮中. 三峡库区主要森林植被类型土壤有机碳研究[D]. 北京:北京林业大学博士学位论文, 2007.[CHEN L Z. Studies on soil organic carbon under main forest vegetation types in the Three-gorges Reservior area[D]. Beijing:Doctor Dissertation of Beijing Forestry University, 2007.]
[5] 沈宏, 曹志洪. 不同农田生态系统土壤碳库管理指数的研究[J]. 生态学报, 2000, 20(4):663-668.[SHEN H, CAO Z H. Study on soil C pool management index of different farmland ecosystems[J]. Acta Ecologica Sinica, 2000, 20(4):663-668.]
[6] 吴建富, 曾研华, 潘晓华, 等. 机械化稻草全量还田对水稻产量和土壤碳库管理指数的影响[J]. 江西农业大学学报, 2011, 33(5):835-839, 879.[WU J F, ZENG Y H, PAN X H, et al. Effect of rice straw incorporation on rice yield and carbon pool management index under the application of farm mechanization[J]. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(5):835-839, 879.]
[7] 王晶, 朱平, 张男, 等. 施肥对黑土活性有机碳和碳库管理指数的影响[J]. 土壤通报, 2003, 34(5):394-397.[WANG J, ZHU P, ZHANG N, et al. Effect of fertilization on soil active C and C pool management index of black soil[J]. Chinese Journal of Soil Science, 2003, 34(5):394-397.]
[8] 李琳, 李素娟. 保护性耕作下土壤碳库管理指数的研究[J]. 水土保持学报, 2006, 20(3):106-109.[LI L, LI S J. Study on Soil C pool management index of conversation tillage[J]. Journal of Soil and Water Conservation, 2006, 20(3):106-109.]
[9] 戴全厚, 刘国彬, 薛萐, 等. 黄土丘陵区封禁对土壤活性有机碳与碳库管理指数的影响[J]. 西北林学院学报, 2008, 23(4):18-22.[DAI Q H, LIU G B, XUE S, et al. Effect of Soil labile organic matter and carbon management index under the closure in eroded Hilly Loess Plateau[J]. Journal of Northwest Forestry University, 2008, 23(4):18-22.]
[10] 薛萐, 刘国彬. 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变[J]. 中国农业科学, 2009, 42(4):1458-1464.[XUE S, LIU G B. Evolution of soil labile organic matter and carbon management index in the artificial Robinia of Loess Hilly Area[J]. Scientia Agricultura Sinica, 2009, 42(4):1458-1464.]
[11] 杜有新, 吴从建, 周赛霞, 等. 庐山不同海拔森林土壤有机碳密度及分布特征[J]. 应用生态学报, 2011, 22(7):1675-1681.[DU Y X, WU C J, ZHOU S X, et al. Forest soil organic carbon density and its distribution characteristics along an altitudinal gradient in Lushan mountains of China[J]. Chinese Journal of Applied Ecology, 2011, 22(7):1675-1681.]
[12] 于法展, 陈龙乾, 沈正平, 等. 苏北低山丘陵区典型性森林土壤有机碳空间分布特征[J]. 测绘科学, 2013, 38(6):52-54, 42.[YU F Z, CHEN L Q, SHEN Z P, et al. Spatial distribution characteristics of soil organic carbon in typical forestlands in North Jiangsu hilly region[J]. Science of Surveying and Mapping, 2013, 38(6):52-54, 42.]
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
[14] 陆昕, 孙龙, 胡海清, 等. 森林土壤活性有机碳影响因素[J]. 森林工程, 2013, 29(1):9-14.[LU X, SUN L, HU H Q, et al. Factors affecting the forest soil active organic carbon[J]. Forest Engineering, 2013, 29(1):9-14.]
[15] 罗歆, 代数, 何丙辉, 等. 缙云山不同植被类型林下土壤养分含量及物理性质研究[J]. 水土保持学报, 2011, 25(1):64-69, 91.[LUO X, DAI S, HE B H, et al. Investigation of nutrients and physical properties of the soil under different types of forest vegetation in Jinyun Mountain[J]. Journal of Soil and Water Conservation, 2011, 25(1):64-69, 91.]
[16] 马明东, 李强, 罗承德, 等. 卧龙亚高山主要森林植被类型土壤碳汇的研究[J]. 水土保持学报, 2009, 23(2):127-131.[MA M D, LI Q, LUO C D, et al. Study on soil labile organic carbon under some main forest types in Wolong Nature Reserve, China[J]. Journal of Soil and Water Conservation, 2009, 23(2):127-131.]
[17] 杨丽霞, 潘剑, 苑韶峰. 森林土壤有机碳库组分定量化研究[J]. 土壤通报, 2006, 37(2):241-243.[YANG L X, PAN J, YUAN S F. Qnantification of forest soil organic carbon pools:a case study in Liping County[J]. Chinese Journal of Soil Science, 2006, 37(2):241-243.]
[1] 于法展, 张忠启, 陈龙乾, 沈正平. 庐山不同森林植被类型土壤特性及其健康评价[J]. 长江流域资源与环境, 2016, 25(07): 1062-1069.
[2] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[3] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[4] 胡海胜,. 山地景区生态足迹分析——以庐山为例[J]. 长江流域资源与环境, 2007, 16(6): 814-814.
[5] 陈亮中,谢宝元,肖文发,黄志霖. 三峡库区主要森林植被类型土壤有机碳贮量研究[J]. 长江流域资源与环境, 2007, 16(5): 640-640.
[6] 胡海胜,郑艳萍. 庐山研究的文献分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宝雷,周万村,马泽忠,. 三峡地区主要地类的自动提取方法研究[J]. 长江流域资源与环境, 2005, 14(4): 445 -449 .
[2] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[3] 梁 彬,李兆林. 西南岩溶石山地区岩溶水资源合理开发利用模式[J]. 长江流域资源与环境, 2008, 17(1): 62 .
[4] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[5] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[6] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[7] 刘 伍,李满春,刘永学,毛 亮. 基于矢栅混合数据模型的土地适宜性评价研究[J]. 长江流域资源与环境, 2006, 15(3): 320 -324 .
[8] 燕乃玲,赵秀华,虞孝感. 长江源区生态功能区划与生态系统管理[J]. 长江流域资源与环境, 2006, 15(5): 598 -602 .
[9] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[10] 梁守真,李仁东,朱超洪. 洞庭湖区生态服务价值变化区域差异研究[J]. 长江流域资源与环境, 2006, 15(2): 196 -200 .