长江流域资源与环境 >> 2016, Vol. 25 >> Issue (10): 1618-1625.doi: 10.11870/cjlyzyyhj201610017

• 生态环境 • 上一篇    下一篇

TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用

黄钰瀚1, 张增信1, 费明哲2, 金秋1   

  1. 1. 江苏省南方现代林业协同创新中心, 南京林业大学生物与环境学院, 江苏 南京 210037;
    2. 南京邮电大学地理与生物信息学院, 江苏 南京 210003
  • 收稿日期:2016-01-22 修回日期:2016-06-13 出版日期:2016-10-20
  • 通讯作者: 张增信,E-mail:nfuzhang@163.com E-mail:nfuzhang@163.com
  • 作者简介:黄钰瀚(1991~),男,硕士研究生,主要从事生态学和水文学方面研究.
  • 基金资助:
    国家重点基础研究发展计划(2012CB417006);国家自然科学基金(41171020);江苏省六大高峰人才项目(2015-JY-017)和江苏高校优势学科建设工程资助项目(PAPD)联合资助

HYDROLOGICAL EVALUATION OF THE TMPA MULTI-SATELLITE PRECIPITATION ESTIMATES OVER THE GANJIANG BASIN

HUANG Yu-han1, ZHANG Zeng-xin1, FEI Ming-zhe2, JIN Qiu1   

  1. 1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
    2. Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210003, China
  • Received:2016-01-22 Revised:2016-06-13 Online:2016-10-20
  • Supported by:
    Project supported by the State Key Development Program for Basic Research of China (012CB417006);National Natural Science Foundation of China (41171020);Six Talent Peaks Project in Jiangsu Province (Grant No.2015-JY-017);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

摘要: 以赣江流域为研究区,基于观测降水和TRMM准实时数据(3B42RTV6、3B42RTV7)和分析数据(3B42V6、3B42V7),驱动VIC水文模型,开展卫星降水产品在赣江流域的水文模拟,评估TRMM降水产品在水文模拟中的应用能力。结果表明:(1)在赣江流域,3B42V7估算的降水与实测降水的对比结果最好,3B42RTV6的估算精度最低,3B42RTV7较3B42RTV6在赣江流域的降水估算精度提升非常明显;(2)在径流模拟方面,3B42V6和3B42V7在日尺度上尽管对洪峰的模拟有所偏差,但模拟结果仍能反映径流变化特征,在月尺度上模拟结果精度较高,纳什系数均在0.9以上,并且二者在4、5月的径流模拟结果较好,7、8月的模拟结果较差,而3B42RTV6对径流的模拟能力较差,日径流量和月径流量均呈现明显低估,3B42RTV7对径流的模拟结果比3B42RTV6有明显改善,可以满足实时水文预报的需求。

关键词: 卫星降水, TMPA, 水文模型, 径流模拟, 赣江流域

Abstract: The Version 6 and Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA) products including near-real-time products (3B42RTV6 and 3B42RTV7) and post-real-time research products (3B42V6 and 3B42V7) were analyzed from January 2006 to December 2010 over the Ganjiang River Basin. The streamflow has been simulated by the VIC hydrological model to assess the ability of TRMM products applied in hydrological processes. The results showed that:(1) the product of 3B42V7 has the highest rainfall estimation accuracy, while the 3B42RTV6 product significantly underestimates the precipitation. However, 3B42RTV7 has been improved more significantly than 3B42RTV6; (2) both the 3B42V6 and 3B42V7 products have better ability in hydrological simulation for the monthly streamflow and better results can be found in April and March than in July and August. However, the product of 3B42RTV6 has a poor capability in the daily and monthly streamflow simulation, while the product of 3B42RTV7 shows a better performance than that of 3B42 RTV6 in hydrological simulation which might be suited to the real-time hydrological forecasting.

Key words: rainfall, TRMM, VIC hydrological model, streamflow, Ganjiang basin

中图分类号: 

  • P333.1
[1] CHEN S, HONG Y, CAO Q, et al. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(23):13060-13074.
[2] LI L, HONG Y, WANG J H, et al. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa[J]. Natural Hazards, 2009, 50(1):109-123.
[3] 刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11):1162-1172.[LIU Y B, FU Q N, SONG P, et al. Satellite retrieval of precipitation:an overview[J]. Advances in Earth Science, 2011, 26(11):1162-1172.]
[4] 孙乐强, 郝振纯, 王加虎, 等. TMPA卫星降水数据的评估与校正[J]. 水利学报, 2014, 46(10):1135-1146.[SUN L Q, HAO Z C, WANG J H, et al. Assessment and correction of TMPA products 3B42RT and 3B42V6[J]. Shuili Xuebao, 2014, 46(10):1135-1146.]
[5] SU F G, HONG Y, LETTENMAIER D P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin[J]. Journal of Hydrometeorology, 2008, 9(4):622-640.
[6] 毛红梅. TRMM雨量在汉江上游大尺度水文模型中的应用[J]. 水利水电快报, 2008, 29(8):22-26, 32.[MAO H M. TRMM rainfall applied in flow prediction of LSHM in upper Hanjiang River basin[J]. Express Water Resources & Hydropower Information, 2008, 29(8):22-26, 32.]
[7] 袁飞, 赵晶晶, 任立良, 等. TRMM多卫星测雨数据在赣江上游径流模拟中的应用[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(7):611-616.[YUAN F, ZHAO J J, REN L L, et al. Streamflow simulation in the upper Ganjiang river basin using the TRMM multi-satellite precipitation data[J]. Journal of Tianjin University (Science and Technology), 2013, 46(7):611-616.]
[8] YONG B, CHEN B, GOURLEY J J, et al. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks:is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes?[J]. Journal of Hydrology, 2014, 508:77-87.
[9] CHEN S, HONG Y, GOURLEY J J, et al. Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States[J]. Water Resources Research, 2013, 49(12):8174-8186.
[10] 杨荣清, 胡立平, 史良云. 赣江流域水文特性分析[J]. 水资源研究, 2003, 24(1):35-37, 40.
[11] LIANG X, WOOD E F, LETTENMAIER D P. Surface soil moisture parameterization of the VIC-2L model:evaluation and modification[J]. Global and Planetary Change, 1996, 13(1/4):195-206.
[12] LIANG X, LETTENMAIER D P, WOOD E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(D7):14415-14428.
[13] 张磊磊, 郝振纯, 童凯, 等. VIC模型在三江源地区产汇流模拟中的应用[J]. 水电能源科学, 2013, 31(1):18-20, 239.[ZHANG L L, HAO Z C, TONG K, et al. Application of VIC model to runoff simulation of three-source regions[J]. Water Resources and Power, 2013, 31(1):18-20, 239.]
[14] PAN M, SAHOO A K, TROY T J, et al. Multisource estimation of long-term terrestrial water budget for major global river basins[J]. Journal of Climate, 2012, 25(9):3191-3206.
[15] 金君良, 王国庆, 刘翠善, 等. 大尺度分布式水文模型VIC在嘉陵江流域径流模拟中的应用[J]. 水资源与水工程学报, 2012, 23(1):55-58, 63.[JIN J L, WANG G Q, LIU C S, et al. Application of large scale distribated hydrological model to runoff simulation in Jialingjiang River basin[J]. Journal of Water Resources & Water Engineering, 2012, 23(1):55-58, 63.]
[16] NIJSSEN B, SCHNUR R, LETTENMAIER D P. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980-93[J]. Journal of Climate, 2001, 14(8):1790-1808.
[17] 费明哲, 张增信, 原立峰, 等. TRMM降水产品在鄱阳湖流域的精度评价[J]. 长江流域资源与环境, 2015, 24(8):1322-1330.[FEI M Z, ZHANG Z X, YUAN L F, et al. Accuracy assessment for TRMM in the Poyang Lake basin[J]. Resources and Environment in the Yangtze Basin, 2015, 24(8):1322-1330.]
[18] 陈坰烽, 张万昌, 吴波. 多目标遗传单纯形算法在概念性水文模型参数优化中的应用[J]. 水土保持通报, 2008, 28(3):107-112.[CHEN J F, ZHANG W C, WU B. Multi-objective calibration with predictive uncertainty analysis for conceptual hydrological models[J]. Bulletin of Soil and Water Conservation, 2008, 28(3):107-112.]
[19] LI X H, ZHANG Q, XU C Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin[J]. Journal of Hydrology, 2012, 426-427:28-38.
[20] MENG J, LI L, HAO Z C, et al. Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River[J]. Journal of Hydrology, 2014, 509:320-332.
[21] JIANG S H, REN L L, HONG Y, et al. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method[J]. Journal of Hydrology, 2012, 452-453:213-225.
[22] YONG B, REN L L, HONG Y, et al. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band:a case study in Laohahe basin, China[J]. Water Resources Research, 2010, 46(7):W07542.
[23] XUE X W, HONG Y, LIMAYE A S, et al. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan:are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?[J]. Journal of Hydrology, 2013, 499:91-99.
[1] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558-2567.
[2] 邹刚华, 李勇, 彭佩钦. 中亚热带红壤区不同土地利用土壤田间持水量估测[J]. 长江流域资源与环境, 2016, 25(02): 234-238.
[3] 孙占东, 黄群, LOTZ Tom. 洞庭湖流域分布式水文模型[J]. 长江流域资源与环境, 2015, 24(08): 1299-1304.
[4] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-.
[5] 凌, 峰, 杜, 耘, 肖, 飞, 吴胜军, 薛怀平. 分布式TOPMODEL模型在清江流域降雨径流模拟中的应用[J]. 长江流域资源与环境, 2010, 19(01): 48-.
[6] 张利平, 陈小凤, 张晓琳, 宋星原. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-.
[7] 刘志勇 赖格英 潘少明. 赣江源头流域植被变化的水文响应模拟研究[J]. 长江流域资源与环境, 2009, 18(5): 446-.
[8] 刘健,张奇. 一个新的分布式水文模型在鄱阳湖赣江流域的验证[J]. 长江流域资源与环境, 2009, 18(1): 19-.
[9] 李恒鹏,王旭强,杨桂山,金 洋. 基于单元格网的STREAM分布式水文模型及其应用——以太湖上游西苕溪流域为例[J]. 长江流域资源与环境, 2007, 16(6): 715-715.
[10] 梁常德,龙天渝,李继承,刘腊美. 三峡库区非点源氮磷负荷研究[J]. 长江流域资源与环境, 2007, 16(1): 26-30.
[11] 陆玉麒,董 平. 流域核心-边缘结构模式探讨——以赣江流域为例[J]. 长江流域资源与环境, 2005, 14(1): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .