长江流域资源与环境 >> 2019, Vol. 28 >> Issue (11): 2718-2726.doi: 10.11870/cjlyzyyhj201911018

• 长江经济带岸线资源研究(专栏) • 上一篇    下一篇

长江中下游滨岸带水体温室气体释放的时空分布特征

刘伟婷1, 2,姚晓龙1,薛惊雅1, 2,赵中华1,张路1*,王晓龙1,蔡永久1   

  1. (1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏 南京 210008;
    2.中国科学院大学,北京 100049)
  • 出版日期:2019-11-20 发布日期:2019-11-29

Seasonal and Spatial Variations in Greenhouse Gases(CH4 and CO2)Emission Along the Riparian Zone of Middle and Lower Reaches of Yangtze River

LIU Wei-ting1,2, YAO Xiao-long1,2, XUE Jing-ya1,2, ZHAO Zhong-hua1, ZHANG Lu1, WANG Xiao-long1, CAI Yong-jiu1   

  1. (1. State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,
    Chinese Academy of Sciences,Nanjing 210008,China; 2. University of Chinese Academy of Sciences,Beijing 100049,China)
  • Online:2019-11-20 Published:2019-11-29

摘要: 内陆河流生态系统作为大气中温室气体通量交换的热点区域,对全球的碳循环有重要影响。分别于平水期(2017年5月)和丰水期(2018年7月)对长江中下游滨岸带水体两种温室气体(CH4和CO2)释放通量进行了调查研究。结果表明:平水期时,CH4和CO2的释放通量分别为0.39~9 668.83 nmol·m-2·h-1和0.25~3 229.41 μmol·m-2·h-1,平均值为298.24±1 308.65 nmol·m-2·h-1和290.75±645.99 μmol·m-2·h-1;丰水期时,二者的释放通量为-22.80~329.76 nmol·m-2·h-1和-110.21~16.39 μmol·m-2·h-1,平均值为21.51±49.56 nmol·m-2·h-1和-3.63±13.25 μmol·m-2·h-1。水体温度、pH、溶解性总磷浓度、溶解性有机碳和溶解性有机氮比值是影响CH4和CO2通量的重要因素。CH4和CO2释放通量还受到通江湖泊的缓冲和入江河流输入的影响,表现为河口水系高,湖口水系低的特点。由于外源污染和滨岸带土地利用的差异,城市岸带的CH4和CO2排放量最高,其次为自然岸带,湿地岸带和河口较低,通量最低的为化工园岸带。估算表明,长江全年碳排放以CO2为主,年释放量约为1.93×107 t(C),CH4年释放量约为2.28×104 t(C),低于世界上一些其他大型河流。

Abstract: Inland rivers are hotpots for the exchange of greenhouse gases(GHGs) with the atmosphere and have a significant influence on global carbon cycle. GHGs(CH4 and CO2) emission from waters of the riparian zone of middle and lower reaches of Yangtze River was measured during the normal season of 2017 and flood season of 2018. Results showed that the fluxes of CH4 and CO2 across the water-air interface ranged from 0.39 to 9668.83 nmol·m-2·h-1 and 0.25 to 3 229.41 μmol·m-2·h-1 in normal season, respectively, while -22.80 to 329.76 nmol·m-2·h-1 and -110.21 to 16.39 μmol·m-2·h-1 in wet season, respectively, for CH4 and CO2. Water temperature, pH, total dissolved phosphorus, and C/N ratio were important influencing factors on CH4 and CO2 fluxes. In addition, the fluxes of CH4 and CO2 at river-connected areas were significantly higher than at lake-connected areas. Due to differences in the external pollutions and land use characteristics, urban zones showed the highest CH4 and CO2 fluxes, followed by natural, wetland and estuarine zones. Industrial areas showed the lowest CH4 and CO2 fluxes. An annual carbon emission of middle and low reaches of Yangtze River was dominated by CO2, with an estimation of 1.93×107 t(C)/a, while only 2.28×104 t(C)/a for CH4. Compared to other large rivers, the estimation value of annual carbon emission of Yangtze River was relatively lower.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林孝松,陈洪凯,王先进,唐红梅,褚春超,覃庆梅,梁学战,陈远川. 西南地区公路洪灾孕灾环境分区[J]. 长江流域资源与环境, 2012, 21(02): 251 .
[2] 邵玉龙| 许有鹏| 马爽爽. 太湖流域城市化发展下水系结构与河网连通变化分析——以苏州市中心区为例[J]. 长江流域资源与环境, 2012, 21(10): 1167 .
[3] 张爱平, 刘艳华, 钟林生, 徐勇, 周凤杰. 基于场理论的沪苏浙皖地区旅游空间差异研究[J]. 长江流域资源与环境, 2015, 24(03): 364 .
[4] 马才学, 赵利利, 柯新利. 湖北省耕地非农化压力的时空演变格局[J]. 长江流域资源与环境, 2016, 25(01): 71 -78 .
[5] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[6] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[7] 芦鑫, 殷淑燕, 王水霞, 高涛涛. 秦岭南北地区农业气候资源时空变化特征[J]. 长江流域资源与环境, 2018, 27(08): 1866 .
[8] 梅梦媛, 陈振杰, 张云倩, 张亚楠, . 居民活动空间与生态约束协调的城市开发边界划定方法——以长沙市为例[J]. 长江流域资源与环境, 2018, 27(11): 2472 -2480 .
[9] 洪步庭 任平. 基于最小累积阻力模型的农村居民点用地生态适宜性评价[J]. 长江流域资源与环境, 0, (): 0 .
[10] 陈 博, 陆玉麒, 潘 颖, 舒 迪, . 基于装备制造业企业的长江经济带网络空间特征研究[J]. 长江流域资源与环境, 2019, 28(02): 261 -268 .