长江流域资源与环境 >> 2021, Vol. 30 >> Issue (5): 1175-1193.doi: 10.11870/cjlyzyyhj202105014

• 生态环境 • 上一篇    下一篇

岷江汤坝航电枢纽工程对水环境的影响研究

魏琦1,李克锋1,赵朋晓2,张鹏1,王凯利3,梁瑞峰1* ,郑宇杰4   

  1.  (1. 四川大学水力学与山区河流开发保护国家重点实验室,四川 成都 610065;2. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310000;3. 四川省环境工程评估中心,四川 成都 610041;4. 四川省遂宁市生态环境安全应急中心,四川 遂宁 629000)
  • 出版日期:2021-05-20 发布日期:2021-06-15

Study on the Influence of Tangba Navigation Junction on Min River on Water Environment

WEI Qi 1 ,LI Ke-feng 1 ,ZHAO Peng-xiao 2 ,ZHANG Peng1 , WANG Kai-li 3 ,LIANG Rui-feng 1,ZHENG Yu-jie 4   

  1. (1. State Key Laboratory of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China;2. Power China Huadong Engineering Co., Ltd., Hangzhou 310000, China;3. Sichuan Environment and Engineering Appraisal Center, Chengdu 610041, China;4. Emergency Center for Ecological Environmental Safety of Suining,Suining 629000,China)
  • Online:2021-05-20 Published:2021-06-15

摘要: 为研究长江上游岷江航电的开发对水环境带来的影响,选取岷江航电梯级水库中的第二级汤坝航电枢纽工程为研究对象。利用2016年的监测数据,分析了现状年库区渠化河段来流负荷,通过构造MIKE21水动力水质数学模型,对汤坝建成前、汤坝建成后和III类来水情况下渠化河段的水质变化进行了数值模拟,分析了支流汇入后的污染带变化,并计算了3种情景下的水环境容量。结果表明,现状年库区渠化河段来流污染源负荷主要来源于岷江干流。汤坝建成后,坝前CODcr和NH3-N浓度均满足III类水质标准,TP浓度属劣V类;在III类来水情况下,坝前CODcr、NH3-N浓度满足III类水质标准,TP浓度属V类。支流汇入渠化河段形成的污染带面积较天然状态下发生变化:除镇江河和筒车河NH3-N不形成污染带以及太和河NH3-N的污染带面积减小外,其余支流水质因子污染带面积均较建设前增加。汤坝建成后,坝址处CODcr的水环境容量减少3 280 t/a,NH3-N水环境容减少368t/a,TP无剩余水环境容量;III类来水情况下,CODcr和NH3-N的水环境相比建设前减少,TP无剩余水环境容量。筒车河三类水质因子水环境容量增加,而镇江河水环境容量减小,建坝前后太和河均无剩余水环境容量。研究可为岷江航电污染源削减及应对措施的指定提供科学依据。

Abstract: In order to explore the influence of the development of navigation junction on Min River in the upper Yangtze River, Tangba navigation junction was selected as the research object which is one of the second order of Min River navigation junction. Analyzing the inflow load in channelized river sections of the reservoir area in accordance with the monitoring data in 2016. Numerical simulation of changes in water quality under three scenarios including before and after the completion of Tangba and in the case of Class III incoming water were performed using MIKE21 model. Then the changes of the pollution zone after the tributary merges was analyzed and the water environmental capacity was also calculated. The results showed that the current source pollution load of the canalized river section in the reservoir area mainly came from the mainstream of the Min River. After completion of construction of Tangba, the CODcr and NH3-N concentrations meet the Class III water quality standards, and the TP concentration is worse than Class V in front of the dam. In the case of Class III incoming water, the TP concentration becomes Class V. The areas of the polluted zone formed by the tributary flowing into the channelized river section have changed: NH3-N in Zhenjiang River and Tongche River not form a pollution zone, and the area of NH3-N pollution in Taihe River decreases, while others have increased. In front of the dam, water environmental capacity of CODcr was reduced by 3 280 t/a, NH3-N was reduced by 368 t/a, and TP had no remaining water environmental capacity. In the case of Class III incoming water, the water environment of CODcr and NH3-N was decreased. However, the TP had no remaining water environmental capacity. Water environmental capacity of the three types of water quality factors of Tongche River was increased, while Zhenjiang River decreased. There is no remaining water environment in the Taihe River before and after the dam was constructed. This study can provide a scientific basis for the reduction of pollution sources and the designation of countermeasures in Min River.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈鲜艳, 张强, 叶殿秀, 廖要明, 祝昌汉, 邹旭恺. 三峡库区局地气候变化[J]. 长江流域资源与环境, 2009, 18(1): 47 .
[2] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[3] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[4] 闵 骞,刘 影,马定国. 退田还湖对鄱阳湖洪水调控能力的影响[J]. 长江流域资源与环境, 2006, 15(5): 574 -578 .
[5] 张 谧,熊高明,谢宗强 . 三峡库区常绿落叶阔叶混交林的监测研究[J]. 长江流域资源与环境, 2004, 13(2): 168 -173 .
[6] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .
[7] 张 虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3): 374 .
[8] 叶 浩,濮励杰,张 健,涂小松. 快速城市化地区土地综合质量评价[J]. 长江流域资源与环境, 2008, 17(3): 366 .
[9] 周金星, 魏 远, 漆良华, 张旭东. 基于ISODATA法的三峡库区生态区划[J]. 长江流域资源与环境, 2008, 17(3): 446 .
[10] 采浦·哈拉尔特,张 斌,景元书,唐家良. 中国东南亚热带小流域混合农业区水文过程的实验研究(简报)[J]. 长江流域资源与环境, 2006, 15(5): 638 -640 .