长江流域资源与环境 >> 2022, Vol. 31 >> Issue (2): 358-365.doi: 10.11870/cjlyzyyhj202202010

• 生态环境 • 上一篇    下一篇

长三角生态绿色一体化示范区优先污染物筛选及协同监测探讨

陈  莹1,2,杨  凯1,2*,杨梦杰1,2,卢士强3,朱永青3,徐  露1,2,钱美尹1,2,施泠西1,2   

  1. (1. 华东师范大学生态与环境科学学院, 上海城市化生态过程和生态恢复重点实验室,上海 200241;2. 上海污染控制与生态安全研究院,上海 200092;3. 上海市环境科学研究院,上海 200233)
  • 出版日期:2022-02-20 发布日期:2022-03-21

Identification and Collaborative Monitoring of Priority Pollutants in Yangtze River Delta Integration Demonstration Zone 

CHEN Ying1, 2, YANG Kai1, 2,YANG Meng-jie1,2,LU Shi-qiang3,ZHU Yong-qing3,XU Lu1,2,QIAN Mei-yin1,2,SHI Ling-xi1,2   

  1. (1. East China Normal University and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration(SHUES), Shanghai 200241, China; 2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092,China; 3. Shanghai Academy of Environmental Sciences, Shanghai 200233,China)
  • Online:2022-02-20 Published:2022-03-21

摘要: 有效识别区域内水环境优先污染物,是长三角生态绿色一体化示范区实现水环境协同监测体系建设的重要内容。在对一体化示范区内典型跨界河流太浦河的多个断面进行2017~2019年每季度一次的109项全指标监测的基础上,结合区域环境及产业特征,选取污染物的检出频率、空间分布、最大占标率和致癌性作为评估指标,采用熵权法和TOPSIS法对《地表水环境质量标准》基本项目以外的特定80项污染物进行优先污染物筛选。结果表明:(1)锑的潜在环境风险高;镍、二氯甲烷、丙烯酰胺的风险比较高;钴、钛、硼、硫化物、阿特拉津、微囊藻毒素-LR、1,4-二氯苯、氯苯的风险一般。(2)目前江苏吴江、浙江嘉善、上海青浦三个行政区存在水环境监测管理协同性不足及数据共享程度较低的现状问题,与统一标准、统一监测、统一执法的水环境共治目标存在一定差距。(3)基于区域监测现状与优先污染物筛选结果,从完善监测指标与信息公开、加强协同监测和数据共享、健全一体化水环境预警体系等方面提出了完善长三角一体化示范区水环境协同监测体系的建议。

Abstract:  Effectively identifying the priority pollutants of the water environment is an important aspect of constructing a coordinated water environment monitoring system in the Yangtze River Delta Integration Demonstration Zone. Entrophy Method and TOPSIS method were used to screen the priority pollutants from 80 specific pollutants other than basic monitoring items in “Surface Water Environmental Quality Standard” based on the quarterly 109 full-indicator monitoring data from 2017-2019 of the Taipu River, which is an important transboundary river in the integrated demonstration zone, with four evaluation indicators such as the frequency rate, spatial distribution, maximum occupancy rate and carcinogenicity .The results show that: (1) The risk of antimony is high; the risk of nickel, dichloromethane, and acrylamide is relatively high; the risk of cobalt, titanium, boron, sulfide, atrazine, microcystin-LR, 1,4-dichlorobenzene and chlorobenzene is average. (2) At present, the water administration and data management in Wujiang in Jiangsu, Jiashan in Zhejiang, and Qingpu in Shanghai are significantly different from the water environment co-governance goal of “unified standards, unified monitoring, and unified law enforcement”. (3) Based on the monitoring status of the demonstration area and the identification results of priority pollutants, this study puts forward some water monitoring recommendations for the Yangtze River Delta Integration Demonstration Zone from the perspectives of “improving monitoring indicators and information disclosure”, “improving coordinated monitoring and data sharing”, and “improving the integrated water environment early warning system”.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[2] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[3] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[4] 文高辉 杨钢桥. 耕地细碎化对农地整治农户土地权属调整意愿的影响研究[J]. 长江流域资源与环境, , (): 0 .
[5] 马剑锋, 佟金萍, 王慧敏, 王 圣. 长江经济带农业用水全局技术效率的空间效应研究[J]. 长江流域资源与环境, 2018, 27(12): 2757 -2765 .
[6] 谢贤鑫 陈美球 . 农户生态耕种采纳意愿及其异质性分析—基于TPB框架的实证研究[J]. 长江流域资源与环境, , (): 0 .
[7] 邢璐平, 方斌, 向梦杰, . 基于GWR模型的江苏省耕地集约利用水平时空变化特征及影响因素[J]. 长江流域资源与环境, 2019, 28(02): 376 -386 .
[8] 刘宇, 赵亮, . 基于过程—效应—功能—服务级联机制的森林减沙服务传输研究[J]. 长江流域资源与环境, 2019, 28(04): 883 -892 .
[9] 刘帅, 何青, 谢卫明, 郭磊城, 沈芳. 近15年来长江口控制站徐六泾悬沙变化特征研究[J]. 长江流域资源与环境, 2019, 28(05): 1197 -1204 .
[10] 夏四友 赵媛 文琦 许昕 崔盼盼. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, , (): 0 .