长江流域资源与环境 >> 2011, Vol. 20 >> Issue (1): 40-.

• 自然资源 • 上一篇    下一篇

长江上游月降水人工神经网络预测模型

冯亚文,任国玉,张丽,罗华超   

  1. (1. 华北水利水电学院, 河南 郑州450011; 2. 中国气象局气候研究开放实验室,国家气候中心, 北京100081)
  • 出版日期:2011-01-20

ARTIFICIAL NEURAL NETWORK MODELS FOR FORECASTINGMONTHLY PRECIPITATION IN THE UPPER YANGTZE RIVER

FENG Yawen1,2,REN Guoyu2,ZHANG Li1,LUO Huachao1   

  1. (1. Faculty of Water Conservancy Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China;2. Laboratory for Climate Studies, China Meteorological Administration, National Climate Center, Beijing 100081, China)
  • Online:2011-01-20

摘要:

长江上游月降水量预测对于三峡库区及整个长江流域水资源管理具有重要意义。根据长江上游不同气候区降水差异,选取玉树、九龙和宜宾3个代表性气象站点近60 a的月降水量数据,运用反向传播神经网络、径向基函数神经网络、广义回归神经网络和多元线性回归法,确定降水时滞和降水月份,建立月降水预测模型,来预测未来一个月的降水量,并采用均方误差和判定系数来验证和对比各种模型的模拟效果。结果显示:人工神经网络模型总体上优于多元线性回归,特别是反向传播神经网络的模拟结果各站表现较好,在确定合理的输入变量和网络结构后,可以尝试作为长江上游各站月降水预测模型。〖

Abstract:

Monthly precipitation forecast for the upper Yangtze River is very essential to the water resources management for the entire Yangtze River basin.Three typical meteorological stations were selected respectively in three different climatic zones.All the selected stations contained nearly 60 years of monthly precipitation records in the upper Yangtze River.This paper estimated the month of precipitation and precipitation time delay parameter,and established monthly precipitation forecasting model using backpropagation neural network,radial basis function neural network,generalized regression neural network and multiple linear regression method respectively,to predict the precipitation of coming month.Then,the mean square error and coefficient of determination were used to verify the simulation accuracy of various models and the model simulation results.The results show that artificial neural network prediction model is superior to multiple linear regression in general.Especially,the performance of the backpropagation neural network is better than the others.It can be determined as an effective monthly precipitation methods for the upper Yangtze River after determining reasonable input variables and network structure.〖

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .