RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2014, Vol. 23 >> Issue (06): 781-.doi: 10.11870/cjlyzyyhj201406006

Previous Articles     Next Articles

RELATIONSHIP BETWEEN PLANTING INDUSTRY CARBON EMISSIONS AND ITS INDUSTRY DEVELOPMENT IN CHINA

TIAN Yun1,2, ZHANG Junbiao1,2, FENG Junhui1,2, WU Xianrong1,2   

  1. (1.College of Economics & Management, Huazhong Agricultural University, Wuhan 430070, China;2.Hubei Rural Development Research Center of Huazhong Agricultural University,Wuhan 430070, China
  • Online:2014-06-20

Abstract:

Carbon emissions from planting industry in China during the period of 1992-2010 as well as those of 31 provinces in 2010 were first estimated in this study. Based on the estimation, to explore the relationship between planting industry development and its carbon emissions, some econometric methods, such as the sequence stationary test, agricultural carbon emissions, were applied into the analysis of the relevant data of planting industry development and planting industry carbon emissions in China during the period of 1992-2010. The results showed as follows. (1)Planting industry carbon emissions in the year of 2010 was 183668 4 million tons, showing an increase of 3562% compared to 1992. Carbon emissions caused by agricultural material inputs, paddy fields and soil accounted for 5326%, 3492% and 1182% of the total, respectively. It existed obvious regional difference. The top ten regions accounted for 6297% of the total planting industry carbon emissions, while the last ten regions accounted for only 718%. And the planting industry carbon emission intensity of Jiangxi province was the highest, reaching as high as 1 19786 kilograms per ten thousand Yuan value of planting industrial output, while Beijing was the lowest, as low as 21986 kilograms per ten thousand Yuan value of planting industrial output. (2)It existed cointegration relationship between planting industry development and planting industry carbon emissions, suggesting a longterm equilibrium relationship. The planting industry development by 1% led to an increase of 0413 5% of planting industry carbon emissions, resulted in that the longterm elasticity of planting industry carbon emissions for planting industry development was 0413 5. According to the shortterm error correction model, the shortterm elasticity of planting industry carbon emissions for planting industry development was 0641 7, and a dynamic adjustment mechanism existed between them. The error correction coefficient (-0423 4) was negative, in line with the reverse correction mechanism. With the existence of shortterm deviation of planting industry carbon emissions from the longrun equilibrium, 4234% of shortterm deviation will be adjusted in order to achieve equilibrium in long term, while longterm deviation of planting industry development cannot be adjusted by system factors except external force. (3)The Granger causality test showed that planting industry development and planting industry carbon emissions were reciprocal causation relationship. It respectively existed unidirectional causal relationship of planting industry development to planting industry carbon emissions at the lag length of 1, and unidirectional causal relationship of planting industry carbon emissions to the planting industry development at the lag length of 2. At the lag length of 3, there was a twoway causal relationship between planting industry development and planting industry carbon emissions. Therefore, it can be broadly considered that planting industry development and planting industry carbon emissions are mutually reinforcing. (4)The analysis of impulse response function showed a weak response of planting industry development to a standard shock of planting industry carbon emissions, and a more intense reaction of planting industry carbon emissions to a standard shock of planting industry development. 3757% of the change in planting industry carbon emissions could be explained by the impact of planting industry development, while only 680% of planting industry development could be explained by the increase in planting industry carbon emissions

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Zheng, FU Rongbing, YANG Haizhen, GU Guowei. COMPARISON OF ORGANIC MATTER REMOVAL IN SUBSURFACE |HORIZONTAL FLOW WETLANDS BASED ON WATER BUDGET [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2007, 16(3): 363 .
[2] ZENG Huiqing. IMPACT OF CLIMATIC VARIATION ON NET PRIMARYPRODUCTIVITY OF NATURAL VEGETATION IN JIANGXI IN RECENT 40 YEARS[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(2): 227 .
[3] XU Su-fang, ZHOU Yin-kang. EVALUATION ON THE SUSTAINABILITY IN LAND USE OF DEVELOPMENT ZONE——A CASE STUDY IN WUHU ECONOMIC AND TECHNOLOGICAL DEVELOPMENT ZONE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(4): 453 -457 .
[4] HAO Hanzhou,JIN Menggui,CAO Lijing,XIE Xianjun. APPLICATION OF FUZZY MATHEMATICS IN WATER QUALITY ASSESSMENT[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(Sup1): 83 -87 .
[5] XU Zu-xin, YE Jian-feng. APPLICATION OF PRETANK TECHNOLOGY IN THE NONPOINT POLLUTION CONTROL OF HEADWATER AREA OF RESERVOIR[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(6): 792 -795 .
[6] LIU Yao-bin,LI Ren-dong. ANALYSIS ON REGIONAL DISPARITY OF ECONOMIC DEVELOPMENT IN HUBEI PROVINCE FROM 1994 TO 2000[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2004, 13(1): 12 -17 .
[7] CHEN Yong-bo. EFFECT OF THE THREE-GORGE PROJECT(TGP) ON THE SUSTAINABLE DEVELOPMENT IN THE YANGTZE BASIN[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2004, 13(2): 109 -113 .
[8] ZHANG Qingqing,ZHANG Shirong,LITing,ZHANG Lin,LIN Xiaoli,. ON LANDSCAPE PATTERN CHANGES AND THEIR INFLUENCING FACTORS BASED ON KINDS OF DATA—A CASE OF YIDONG SECTION,LIUSHA RIVER[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(Sup1): 125 -130 .
[9] ZHOU Guo-zhong,FENG Hai-xia. RESEARCH ON THE REGIONAL DIFFERENCES OF TOURISM RESOURCES OF ZHEJIANG PROVINCE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(2): 157 -163 .
[10] WENG Junshan, DUAN Ning,ZHANG Ying. PHYSICAL AND CHEMICAL CHARACTERISTICS OF ATMOSPHERIC PARTICLES IN SHUANGQIAO FARM, JIAXING CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(1): 129 .