RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2016, Vol. 25 >> Issue (11): 1738-1747.doi: 10.11870/cjlyzyyhj2016011013

Previous Articles     Next Articles

RESPONSES OF SOIL MICROORGANISM QUANTITY TO SIMULATED TEMPERATURE ENHANCEMENT IN THE COASTAL PHRAGMITES AUSTRALIS WETLAND

LI Yan1,2, GAO Yan-na1,2, QI Zhi-wei1,2, JIANG Nan1,2, ZHONG Qi-cheng3, JIANG Shan1, WANG Kai-yun1,2, ZHANG Chao1   

  1. 1. School of Ecological Science, East China Normal University, Shanghai 200241, China;
    2. Key Laboratory of Urban Ecology and Restoration, Shanghai 200241, China;
    3. Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
  • Received:2016-03-09 Revised:2016-07-19 Online:2016-11-20
  • Supported by:
    Shanghai Municipal Science and Technology Project, "Research on Key Technologies of Monitoring Data Management of Important Ecosystem in Chongming"(11dz1210903);2015 annual open fund of Shanghai Key Laboratory of urban ecological process and ecological restoration (SHUES2015A02);National Natural Science Foundation of China(31500392);State Key Laboratory of estuarine and Coastal Science(SKLECKF201411)

Abstract: By using the method of open-top growth chambers (OTC) to simulate temperature enhancement for 8 consecutive years(2008-2015), the study studied the response of different soil layers and rhizosphere and non-rhizosphere of Phragmites australis and Imperata cylindrica culturable soil microbial quantity change to long-term simulated temperature enhancement in coastal wetland in Estern Chongming Island. The results showed that:(1) long-term warming resulted in the quantity of culturable soil microbial increased greatly in warming group than in control group. Warming had a significant effect on the quantity of bacteria, fungi in surface layer. Bacteria number reached the largest increasing rate of 34.16% in the first layer, while fungi number reached the largest increasing rate of 64.42% in the third layer. The effect of warming on actinomycetes was significant in 20-40cm layer, with the largest increasing rate of 59.47%.(2) Long-term warming had little impact on the rhizosphere effect change of reed, with a smaller effect in different layer in warming group. Rhizosphere fungi and actinomycetes of Imperata cylindrical differed obviously in second and third layer, respectively. (3) The study showed different responses of soil culturable microorganism quantity and rhizosphere effect of different plants to long-term warming. There were different increasing percentage of soil culturable microorganism quantity and rhizosphere effect between Phragmites australis and Imperata cylindrical. It might be related to the plant type, the kind and quantity of rhizosphere secretion.

Key words: coastal wetland, long-term temperature enhancement, culturable microorganism quantity, rhizosphere effect

CLC Number: 

  • S342.2
[1] ORESKES N. The scientific consensus on climate change[J]. Science, 2004, 306(5702):1686.
[2] IPCC. Climate change 2007:the physical science basis. The Fourth assessment report of working group[R]. Cambridge:Cambridge University Press, 2007.
[3] HYVÖNEN R, ÅGREN G J, LINDER S, et al. The likely impact of elevated[CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review[J]. New Phytologist, 2007, 173(3):463-480.
[4] RUSTAD L E, CAMPBELL J L, MARION G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562.
[5] TSCHERKO D, KANDELER E, JONES T H. Effect of temperature on below-ground N-dynamics in a weedy model ecosystem at ambient and elevated atmospheric CO2 levels[J]. Soil Biology and Biochemistry, 2001, 33(4/5):491-501.
[6] 王叶, 延晓冬. 全球气候变化对中国森林生态系统的影响[J]. 大气科学, 2006, 30(5):1009-1018.[WANG Y, YAN X D. The response of the forest ecosystem in china to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018.]
[7] JENKINSON D S, BROOKES P C, POWLSON D S. Measuring soil microbial biomass[J]. Soil Biology and Biochemistry, 2004, 36(1):5-7.
[8] ELSGAARD L, PETERSEN S O, DEBOSZ K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology[J]. Environmental Toxicology and Chemistry, 2001, 20(8):1656-1663.
[9] FILIP Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture, Ecosystems & Environment, 2002, 88(2):169-174.
[10] 杨玉莲. 模拟增温对高山森林土壤微生物和酶活性的影响[D]. 雅安:四川农业大学硕士学位论文, 2012.[YANG Y L. Effects of simulated warming on soil microbial and enzyme activity in the alpine forests[D]. Ya'an:Master Dissertation of Sichuan Agricultural University, 2012.]
[11] WALDROP M P, FIRESTONE M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions[J]. Biogeochemistry, 2004, 67(2):235-248.
[12] ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2008, 14(12):2898-2909.
[13] FREY S D, DRIJBER R, SMITH H, et al. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology and Biochemistry, 2008, 40(11):2904-2907.
[14] 裴希超, 许艳丽, 魏巍. 湿地生态系统土壤微生物研究进展[J]. 湿地科学, 2009, 7(2):181-186.[PEI X C, XU Y L, WEI W. A review on soil microorganisms in wetland ecosystem[J]. Wetland Science, 2009, 7(2):181-186.]
[15] 徐惠风, 刘兴土, 白军红. 长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究[J]. 水土保持学报, 2004, 18(3):115-117, 122.[XU H F, LIU X T, BAI J H. Dynamic change and environmental effects of soil microorganism in marsh soils from Carex Meyeriana wetlands in Changbai Mountain[J]. Journal of Soil Water Conservation, 2004, 18(3):115-117, 122.]
[16] MARILLEY L, HARTWIG U A, ARAGNO M. Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions[J]. Microbial Ecology, 1999, 38(1):39-49.
[17] 李娜, 张利敏, 张雪萍. 土壤微生物群落结构影响因素的探讨[J]. 哈尔滨师范大学自然科学学报, 2012, 28(6):70-74.[LI N, ZHANG L M, ZHANG X P. The discussion of affecting factors on soil microbial community structure[J]. Natural Science Journal of Harbin Normal University, 2012, 28(6):70-74.]
[18] 卫云燕, 尹华军, 刘庆, 等. 气候变暖背景下森林土壤碳循环研究进展[J]. 应用与环境生物学报, 2009, 15(6):888-894.[WEI Y Y, YIN H J, LIU Q, et al. Advance in research of forest carbon cycling under climate warming[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(6):888-894.]
[19] 张卫建, 许泉, 王绪奎, 等. 气温上升对草地土壤微生物群落结构的影响(英文)[J]. 生态学报, 2004, 24(8):1742-1747.[ZHANG W J, XU Q, WANG X K, et al. Impacts of experimental atmospheric warming on soil microbial community structure in a tallgrass prairie[J]. Acta Ecologica Sinica, 2004, 24(8):1742-1747.]
[20] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2):252-261.[ZHANG N L, GUO J X, WANG X Y, et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology, 2007, 31(2):252-261.]
[21] KENNEDY A D. Simulated climate change:are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations?[J]. Global Change Biology, 1995, 1(1):29-42.
[22] CHAPIN Ⅲ F S, SHAVER G R, GIBLIN A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3):694-711.
[23] NORBY R, EDWARDS N, RIGGS J, et al. Temperature-controlled open-top chambers for global change research[J]. Global Change Biology, 1997, 3(3):259-267.
[24] KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11(9):1440-1451.
[25] 仲启铖. 温度和水位对滨海围垦湿地碳过程的影响——以崇明东滩为例[D]. 上海:华东师范大学博士学位论文, 2014.[ZHONG Q C. The Effects of temperature and ground water on the carbon processes in coastal reclaimed wetland:a case study at Dongtan of Chongming Island[D]. Shanghai:Doctor Dissertation of East China Normal University, 2014.]
[26] 董玉琛, 郑殿升. 中国小麦遗传资源[M]. 北京:中国农业出版社, 2000.
[27] 陈华癸, 李阜棣. 土壤微生物学[M]. 上海:上海科学技术出版社, 1979:311-314.
[28] BERGNER B, JOHNSTONE J, TRESEDER K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12):1996-2004.
[29] 关阅章, 刘安田, 仲启铖, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27-34.[GUAN Y Z, LIU A T, ZHONG Q C, et al. Responses of decomposition of Phragmites australis litter to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5):27-34.]
[30] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社, 1986:110-283.
[31] 曾繁富, 赵同谦, 徐华山, 等. 滨河湿地土壤微生物数量及多样性研究[J]. 环境科学与技术, 2009, 32(10):13-18.[ZENG F F, ZHAO T Q, XU H S, et al. Number of microbes and its biodiversity in soil of riparian wetland[J]. Environmental Science & Technology, 2009, 32(10):13-18.]
[32] 成水平, 夏宜琤. 香蒲、灯心草人工湿地的研究——Ⅱ. 净化污水的空间[J]. 湖泊科学, 1998, 10(1):62-66.[CHENG S P, XIA Y C. Artificial wetland with cattail(Typha angustifilia), rush (Juncus effusus), Ⅱ:pufifying space[J]. Journal of Lake Science, 1998, 10(1):62-66.]
[33] 田呈明, 刘建军, 梁英梅, 等. 秦岭火地塘林区森林根际微生物及其土壤生化特性研究[J]. 水土保持通报, 1999, 19(2):19-22.[TIAN C M, LIU J J, LIANG Y M, et al. Rhizosphere mircroorganisms and soil bio chemical properties at Huoditang forest region of the Qinling mountains[J]. Bulletin of Soil and Water Conservation, 1999, 19(2):19-22.]
[34] HARTE J, SHAW R. Shifting dominance within a montane vegetation community:results of a climate-warming experiment[J]. Science, 1995, 267(5199):876-880.
[35] HOBBIE S E. Temperature and plant species control over litter decomposition in Alaskan tundra[J]. Ecological Monographs, 1996, 66(4):503-522.
[36] CORNELISSEN J H C, PÉREZ-HARGUINDEGUY N, DÍAZ S, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents[J]. New Phytologist, 1999, 143(1):191-200.
[37] 徐振锋, 唐正, 万川, 等. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J]. 应用生态学报, 2010, 21(11):2727-2733.[XU Z F, TANG Z, WAN C, et al. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan[J]. Chinese Journal of Applied Ecology, 2010, 21(11):2727-2733.]
[38] 张祥霖, 石盛莉, 潘根兴, 等. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 2008, 23(9):974-981.[ZHANG X L, SHI S L, PAN G X, et al. Changes in eco-chemical properties of a mangrove wetland under spartina invasion from Zhangjiangkou, Fujian, China[J]. Advances in Earth Science, 2008, 23(9):974-981.]
[1] BU Nai-shun, WANG Kun, HOU Yu-le, LI Gang, QI Shu-juan, FANG Chang-ming, QU Jun-feng. EFFECTS OF SEMI-LUNAR TIDAL CYCLING ON SOIL PHYSICAL AND CHEMICAL PROPERTIES IN COASTAL WETLANDS [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2015, 24(11): 1898-1905.
[2] LING Cheng-Xing, ZHANG Fu-Qing, Lin- Hui-. RESEARCH ON EXTRACTING COASTAL WETLANDS WATER INFORMATION USING COMPOSITION CIWI WATER INDEX [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2010, 19(2): 152-.
[3] WANG Ying, ZHU Da-kui. CHARACTERISTICS AND EXPLOITATION OF COASTAL WETLAND OF CHINA [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(5): 553-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZENG Qun,CAI Shu-ming. QUANTITATIVE EVALUATION ON THE SUSTAINABLE APPLICATIONOF WATER RESOURCE IN WUHAN CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(4): 429 -434 .
[2] CHEN Xiqing,LV Xixi,YAN Yixin,TONG Chaofeng,SONG Zhiyao, DOU Xiping, LI Jianyong,TIAN Lei. LONGTERM CHANGES AND CAUSES OF THE GRAIN SIZE OF BOTTOM SEDIMENTS AT LANDWARD LIMIT OF THE YANGTZE ESTUARY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(4): 598 .
[3] MO Hong-wei,REN Zhi-yuan,XIE Hong-xia. LAND USE CHANGES AND DRIVING FORCES IN SOUTHEAST HILLS OF CHINA——A CASE STUDY OVER HENGYANG CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2004, 13(6): 551 -556 .
[4] JIANG Tian-wen,FAN Zhi-hong. EVOLUTIONAL MECHANISM IN CHANGE OF RIVERS FROM COMMON RESOURCE TO TRAGEDY OF THE COMMONS[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(3): 315 -319 .
[5] LIU Yu, DU Jiang, ZHANG Junbiao. HYPOTHESIS AND VALIDATION ON THE KUZNETS CURVE OF AGRICULTURAL WATER USE AND ECONOMIC GROWTH[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(4): 593 .
[6] WANG Qian, ZHANG Zengxiang, YI Ling, TAN Wenbin, WANG Changyou. RESEARCH ON URBAN EXPANSION IN NANJING, CHINA USING RS AND GIS[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2007, 16(5): 554 .
[7] XIA Ziqiang. RESEARCH ADVANCE IN RIVER HEALTH[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(2): 252 .
[8] SUN Xiaoxia, ZHANG Jixian,LIU Zhengjun. MONITORING THE LAND USE DYNAMICS AND ANALYZING ITS CHANGE IN TIME SERIES USING IMAGERY IN THREE GORGES RESERVOIR AREA[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(4): 557 .
[9] ZHANG Lixu|JIANG Xiaoshan|ZHAO Min,LI Zhien. ACCUMULATION OF HEAVY METALS IN SURFACE SEDIMENTS FROM |THE SEA REGION OF YANGSHAN IN THE YANGTZE ESTUARY WITH |ASSESSMENT OF THEIR POTENTIAL ECOLOGICAL RISK[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2007, 16(3): 351 .
[10] MA Zongwei, XU Youpeng,ZHONG Shanjin. INFLUENCE OF RIVER NETWORK FRACTAL CHARACTERISTIC ON RUNOFF
——CASE STUDY IN THE BASIN OF UPPER AND MIDDLE COURSES OF GAN RIVER
[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(2): 163 .