RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN >> 2017, Vol. 26 >> Issue (06): 945-954.doi: 10.11870/cjlyzyyhj201706017

Previous Articles    

SPATIAL AND TEMPORAL VARIATIONS OF POTENTIAL EVAPOTRANSPIRATION IN SOUTHWESTERN CHINA FROM 1962 TO 2013

LANG Deng-xiao, SHI Jia-qi, ZHENG Jiang-kun, LIAO Feng, MA Xing, WANG Wen-wu, CHEN Yi-fan   

  1. College of Forestry Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory of Soil and Water Conservation & Desertification Combating, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2016-11-01 Revised:2016-12-30 Online:2017-06-20
  • Supported by:
    National Natural Science Foundation of China (41601028);China Postdoctoral Science Foundation funded project (2012M511938)

Abstract: Potential evapotranspiration (PET) is crucial to water resources assessment and climate change. Based on the Penman-Monteith equation proposed by Food and Agriculture Organization (FAO) and daily meteorological data of 90 meteorological stations in Southwestern China, daily potential evapotranspiration at 90 meteorological stations was calculated. Then, various statistical methods were used to analyze its spatial and temporal variations. The results showed that the mean annual potential evapotranspiration in the whole Southwestern China during the recent 52 years was 3 209.8 mm, the highest potential evapotranspiration value was observed in Yunnan Province (3 664.7 mm), followed by Sichuan Province (3 015.0 mm), Guizhou Province (2 958.0 mm), and Chongqing Municipality (2 972.4 mm). PET in summer was the highest, followed by spring, autumn and winter. Distribution characteristics of four seasons are different from that of annual mean. Moreover, the linear changing trend of potential evapotranspiration in Southwestern China was 0.9 mm/10a. There are 31 stations showing a decreasing trend (p<0.1) and 17 stations showing an increasing trend (p<0.1). Decreasing PET in spring and summer was found at 55.6% and 63.3% of all stations, respectively. While increasing PET in autumn and winter was found at 62.2% and 58.9% of all stations, respectively. Through the abrupt change test and moving t-test, a significant abrupt point was found in 1995 for PET of Southwestern China (p<0.05). Among the 90 stations, abrupt points of 76 stations concentrated in the 1980s. In additional, 15 stations had no abrupt points which mainly distributed in the eastern margin of the Tibetan Plateau. On the whole, PET in Southwestern China increased slightly from 1962 to 2013. However, some regions appeared an opposite trend. The abrupt test also showed the same pattern. Complex terrain environment and climate characteristics are the main factors reflecting the unique feature of hydrometeorology changes in Southwestern China.

Key words: potential evapotranspiration, Penman-Monteith equation, Mann-Kendall test, changing trend, Southwestern China

CLC Number: 

  • S161.4
[1] FISHER J B, WHITTAKER R J, MALHI Y. ET come home:potential evapotranspiration in geographical ecology[J]. Global Ecology and Biogeography, 2011, 20(1):1-18.
[2] 刘小莽, 郑红星, 刘昌明, 等. 海河流域潜在蒸散发的气候敏感性分析[J]. 资源科学, 2009, 31(9):1470-1476.[LIU X M, ZHENG H X, LIU C M, et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin[J]. Resources Science, 2009, 31(9):1470-1476.]
[3] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration:Guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56[R]. Rome:Food and Agriculture Organization of the United Nations, 1998.
[4] 张晓琳, 熊立华, 林 琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2):229-237.[ZHANG X L, XIONG L H, LIN L, et al. Application of five potential evapotranspiration equations in Hanjiang Basin[J]. Arid Land Geography, 2012, 35(2):229-237.]
[5] 杜加强, 熊珊珊, 刘成程, 等. 黄河上游地区几种参考作物蒸散量计算方法的适用性比较[J]. 干旱区地理, 2013, 36(5):831-840.[DU J Q, XIONG S S, LIU C C, et al. Comparison of models for estimating reference crop evapotranspiration in the headwater catchment of the Yellow River basin, China[J]. Arid Land Geography, 2013, 36(5):831-840.]
[6] 左德鹏, 徐宗学, 李景玉, 等. 气候变化情景下渭河流域潜在蒸散量时空变化特征[J]. 水科学进展, 2011, 22(4):455-461.[ZUO D P, XU Z X, LI J Y, et al. Spatiotemporal characteristics of potential evapotranspiration in the Weihe River basin under future climate change[J]. Advances in Water Science, 2011, 22(4):455-461.]
[7] GUO S L, GUO J, ZHANG J, et al. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin[J]. Science in China Series E:Technological Sciences, 2009, 52(11):3234-3239.
[8] RAHIMI KHOOB A. Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment[J]. Irrigation Science, 2008, 26(3):253-259.
[9] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2):109-120.
[10] 刘昌明, 张 丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5):579-588.[LIU C M, ZHANG D. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5):579-588.]
[11] RODERICK M L, ROTSTAYN L D, FARQUHAR G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17):L17403.
[12] CHATTOPADHYAY N, HULME M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change[J]. Agricultural and Forest Meteorology, 1997, 87(1):55-73.
[13] ABTEW W, OBEYSEKERA J, IRICANIN N. Pan evaporation and potential evapotranspiration trends in South Florida[J]. Hydrological Processes, 2011, 25(6):958-969.
[14] 韩松俊, 刘群昌, 杨书君. 黑河流域上中下游潜在蒸散发变化及其影响因素的差异[J]. 武汉大学学报(工学版), 2009, 42(6):734-737.[HAN S J, LIU Q C, YANG S J. Differences of changes in potential evapotranspiration and its factors over the upper, middle and lower reaches of Heihe River Basin[J]. Engineering Journal of Wuhan University, 2009, 42(6):734-737.]
[15] 陈 超, 庞艳梅, 潘学标, 等. 四川地区参考作物蒸散量的变化特征及气候影响因素分析[J]. 中国农业气象, 2011, 32(1):35-40.[CHEN C, PANG Y M, PAN X B, et al. Analysis on change of reference crop evapotranspiration and climatic influence factors in Sichuan[J]. Chinese Journal of Agrometeorology, 2011, 32(1):35-40.]
[16] 罗孳孳, 阳园燕, 杨世琦, 等. 重庆地区参考作物蒸散时空特征与气候影响因子[J]. 节水灌溉, 2012(10):5-9.[LUO Z Z, YANG Y Y, YANG S Q, et al. Spatial-temporal characteristics of reference crop evapotranspiration and climatic influence factors in Chongqing[J]. Water Saving Irrigation, 2012(10):5-9.]
[17] 谢 平, 张杨珠, 龙怀玉, 等. 近31年来云南省潜在蒸散量的时空演变[J]. 西南农业学报, 2016, 29(4):940-947.[XIE P, ZHANG Y Z, LONG H Y, et al. Temporal-spatial variations of potential evapotranspiration in Yunnan Province during 1981-2011[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(4):940-947.]
[18] 戴明宏, 李玉涛, 王腊春, 等. 典型喀斯特地区参考作物蒸散量的时空变化分析——以贵州省为例[J]. 地球与环境, 2016, 44(3):342-352.[DAI M H, LI Y T, WANG L C, et al. Temporal and spatial variation of reference crop evapotranspiration in Guizhou Province, China[J]. Earth and Environment, 2016, 44(3):342-352.]
[19] ALLEN R G, PRUITT W O, WRIGHT J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management, 2006, 81(1/2):1-22.
[20] ALLEN R G, CLEMMENS A J, BURT C M, et al. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1):24-36.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20481-2006 气象干旱等级[S]. 北京:中国标准出版社, 2006.[General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 20481-2006 Classification of meteorological droughtcategory[S]. Beijing:China Standard Press, 2006.]
[22] 王 蒙, 殷淑燕. 近52a长江中下游地区极端降水的时空变化特征[J]. 长江流域资源与环境, 2015, 24(7):1221-1229.[WANG M, YIN S Y. Spatio-temporal variations of the extreme precipitation of middle and lower reaches of the Yangtze river in recent 52 years[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7):1221-1229.]
[23] XU X Y, YANG D W, YANG H B, et al. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014, 510:530-540.
[24] DAI A G. Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews:Climate Change, 2011, 2(1):45-65.
[25] BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox[J]. Nature, 1998, 396(6706):30.
[26] 高 歌, 陈德亮, 任国玉, 等. 1956~2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3):378-387.[GAO G, CHEN D L, REN G Y, et al. Trend of potential evapotranspiration over China during 1956 to 2000[J]. Geographical Research, 2006, 25(3):378-387.]
[27] 申双和, 盛 琼. 45年来中国蒸发皿蒸发量的变化特征及其成因[J]. 气象学报, 2008, 66(3):452-460.[SHEN S H, SHENG Q. Changes in pan evaporation and its cause in China in the last 45 years[J]. Acta Meteorologica Sinica, 2008, 66(3):452-460.]
[28] 刘 敏, 沈彦俊, 曾 燕, 等. 近50年中国蒸发皿蒸发量变化趋势及原因[J]. 地理学报, 2009, 64(3):259-269.[LIU M, SHEN Y J, ZENG Y, et al. Changing trend of pan evaporation and its cause over the past 50 years in China[J]. Acta Geographica Sinica, 2009, 64(3):259-269.]
[29] 尹文有. 全球变暖背景下西南地区气候变化特征分析[D]. 兰州:兰州大学硕士学位论文, 2010.[YIN W Y. Analysis of climate change characteristics over Southwest China under the background of global warming[D]. Lanzhou:Master Dissertation of Lanzhou University, 2010.]
[30] 周 丹, 张 勃, 李小亚, 等. 1961~2010年中国大陆地面气候要素变化特征分析[J]. 长江流域资源与环境, 2014, 23(4):549-558.[ZHOU D, ZHANG B, LI X Y, et al. Analysis of variations of climatic elements in surface ground of mainland China during 1961-2010[J]. Resources and Environment in the Yangtze Basin, 2014, 23(4):549-558.]
[31] 王 钧, 蒙吉军. 西南喀斯特地区近45年来气候变化特征及趋势[J]. 北京大学学报(自然科学版), 2007, 43(2):223-229.[WANG J, MENG J J. Characteristics and tendencies of climate change in the Southwestern Karst Region of China in the recent 45 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2):223-229.]
[32] YUE S, WANG C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6):4-1-4-7.
[33] 黄 英, 王 宇. 云南省蒸发量时空分布及年际变化分析[J]. 水文, 2003, 23(1):36-40.[HUANG Y, WANG Y. Analysis on temporal and spatial distribution and inter-annual change of the evaporation capacity in Yunnan Province[J]. Hydrology, 2003, 23(1):36-40.]
[34] 李 楠, 张 宏. 定量分析四川省1954~2014年参考作物蒸散量变化特征及气候影响因素[J]. 贵州师范大学学报(自然科学版), 2015, 33(4):32-36.[LI N, ZHANG H. Analyze the characteristics of reference crop evapotranspiration and climate factors in Sichuan during 1954~2014[J]. Journal of Guizhou Normal University (Natural Sciences), 2015, 33(4):32-36.]
[35] 徐蒙蒙, 张志才, 陈 喜. 贵州省参考作物蒸散发量的时空变化分析[J]. 地球与环境, 2012, 40(2):243-249.[XU M M, ZHANG Z C, CHEN X. Spatio-temporal variation of reference evapotranspiration in Guizhou Province from 1960 to 2009[J]. Earth and Environment, 2012, 40(2):243-249.]
[36] 徐 羽, 徐 刚, 吴艳飞, 等. 重庆市参考作物蒸散量及湿润指数变化研究[J]. 水土保持研究, 2015, 22(3):176-181, 187.[XU Y, XU G, WU Y F, et al. Reference crop evapotranspiration and surface humidity index in Chongqing city[J]. Research of Soil and Water Conservation, 2015, 22(3):176-181, 187.]
[37] THOMAS A. Seasonal and spatial variation of evapotranspiration in the mountains of southwest China[J]. Journal of Mountain Science, 2002, 20(4):385-393.
[38] 董晴晴, 占车生, 王会肖, 等. 2000年以来的渭河流域实际蒸散发时空格局分析[J]. 干旱区地理, 2016, 39(2):327-335.[DONG Q Q, ZHAN C S, WANG H X, et al. Spatio-temporal patterns of actual evapotranspiration in the Weihe River Basin since 2000[J]. Arid Land Geography, 2016, 39(2):327-335.]
[39] 唐 婷, 冉圣宏, 谈明洪. 京津唐地区城市扩张对地表蒸散发的影响[J]. 地球信息科学学报, 2013, 15(2):233-240.[TANG T, RAN S H, TAN M H. Urbanization and its impact on the evapotranspiration in Beijing-Tianjin-Tangshan Area[J]. Journal of Geo-Information Science, 2013, 15(2):233-240.]
[40] 王炳亮, 李国胜. 1961~2010年辽河三角洲参考蒸散发变化特征及主导因子分析[J]. 地理科学, 2014, 34(10):1233-1238.[WANG B L, LI G S. Quantification of the reasons for reference evapotranspiration changes over the Liaohe Delta, Northeast China[J]. Scientia Geographica Sinica, 2014, 34(10):1233-1238.]
[41] GRIFFITHS G M, CHAMBERS L E, HAYLOCK M R, et al. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region[J]. International Journal of Climatology, 2005, 25(10):1301-1330.
[42] 温姗姗, 姜 彤, 李修仓, 等. 1961-2010年松花江流域实际蒸散发时空变化及影响要素分析[J]. 气候变化研究进展, 2014, 10(2):79-86.[WEN S S, JIANG T, LI X C, et al. Changes of actual evapotranspiration over the Songhua River Basin from 1961 to 2010[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(2):79-86.]
[43] 谢今范, 韦小丽, 张晨琛, 等. 第二松花江流域实际蒸散发的时空变化特征和影响因素[J]. 生态学杂志, 2013, 32(12):3336-3343.[XIE J F, WEI X L, ZHANG C C, et al. Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River basin, Northeast China[J]. Chinese Journal of Ecology, 2013, 32(12):3336-3343.]
[44] 蒋 冲, 王 飞, 穆兴民, 等. 秦岭南北潜在蒸散量时空变化及突变特征分析[J]. 长江流域资源与环境, 2013, 22(5):573-581.[JIANG C, WANG F, MU X M, et al. Spatial-temporal variations and mutations of potential evapotranspiration in the Northern and Southern regions of the Qinling mountains[J]. Resources and Environment in the Yangtze Basin, 2013, 22(5):573-581.]
[45] 吴增祥. 气象台站历史沿革信息及其对观测资料序列均一性影响的初步分析[J]. 应用气象学报, 2005, 16(4):461-467.[WU Z X. Preliminary analyses of the information on meteorological station historical evolution and its impacts on homogeneity of observational records[J]. Journal of Applied Meteorological Science, 2005, 16(4):461-467.]
[1] MAO Tian-xu, WANG Gen-xu. ANALYSIS ON CHARACTERISTICS OF LOW-FLOW BASED ON THE MONTHLY RUNOFF RECESSION COEFFICIENT IN THE THREE-RIVER HEADWATERS REGION [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2016, 25(07): 1150-1157.
[2] YUAN Wen-de, ZHENG Jiang-kun. SPATIAL AND TEMPORAL VARIATIONS OF EXTREME TEMPERATURE EVENTS IN SOUTHWESTERN CHINA DURING 1962-2012 [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2015, 24(07): 1246-1254.
[3] XIE Dian-Xiu, Zhang- Jiang, Ju-Xu-Kai, Chen-Xian-Yan. CHANGING TRENDS OF MAJOR METEOROLOGICAL DISASTERS IN RECENT DECADES OVER THREE GORGES RESERVOIR AREA [J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(3): 296-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Yanling, LIU Aiming. COMPETITION MECHANISM OF CULTIVATED LANDRESOURCES IN WINTER AGRICULTURE IN THE YANGTZE BASIN:THEORY AND CASE STUDY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(2): 146 .
[2] XIE Xiao-nan,XU Peng-zhu, QIN Bo-qiang. ANALYSIS ON PROBLEMS AND COUNTERMEASURES OFLANDSURFACE SUBSIDENCE IN TAILAKE BASIN[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2005, 14(1): 125 -131 .
[3] JIAN Min-fei,GONG Xiao-feng,YOU Hai,HUANG Zhi-zhong,ZHU Jie. ASSESSMENT OF POLLUTION OF HEAVY METALS IN WATER SEDIMINTS AND AQUATIC PLANTS IN POYANG LAKE BASINS[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2004, 13(6): 589 -593 .
[4] WANG Hai-ying,GONG Yuan-bo,CHEN Lin-wu. COMPARISON OF SOIL MICROORGANISM AND ENZYME ACTIVITY IN DIFFERENT PATTERNS OF VEGETATION REHABILITATION——AN EXAMPLE FROM UPPER REACHES OF JIALINGJIANG RIVER[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(2): 201 -206 .
[5] XIANG Yunbo, XU Changle, PENG Xiufen. ANALYSIS ON THE SPATIAL STRUCTURE OF RECYCLING ECONOMY OF URBAN AGGLOMERATION IN THE YANGTZE RIVER DELTA[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2008, 17(5): 661 .
[6] FENG Zhi-yong,ZENG Gang. STUDY ON THE EVALUATION OF INVESTMENT ENVIRONMENT OF INDUSTRIAL PARKS IN SHANGHAI CITY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(3): 274 -280 .
[7] SONG Xinshan,WANG Yonghui,QIN Yan,LIU Zhenhong,WU Yingling. CONSTRUCTED WETLANDS AS A SUSTAINABLE SOLUTION FORWASTEWATER TREATMENT IN NEWCITY ZONE OF SHANGHAI[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2006, 15(Sup1): 88 -91 .
[8] CHEN Xi. BIFURCATION OF THE FOUR OPENINGS ON THE SOUTHERN BANK OF JINGJIANG RIVER:FROM SONG TO QING DYNASTY[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2009, 18(3): 270 -274 .
[9] CHEN Yong-Bai, Deng- Yun-| Liang-Rui-Feng-. IMPACT OF STOPLOG INTAKE WORKS ON RESERVOIR DISCHARGED WATER TEMPERATURE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2010, 19(03): 340 .
[10] TIAN Zhong-Zhi, GENG You-Hua, JIANG Rui-Xue, GAO Yan. DISTRIBUTION OF PHOSPHORUS FRACTIONS IN THE SURFICIAL SEDIMENTS OF DONGPING LAKE[J]. RESOURCES AND ENVIRONMENT IN THE YANGTZE BASIN, 2010, 19(06): 724 .