长江流域资源与环境 >> 2022, Vol. 31 >> Issue (3): 588-601.doi: 10.11870/cjlyzyyhj202203009

• 自然资源 • 上一篇    下一篇

鄱阳湖鱼类集合群落结构特征及其时间变化研究

蒋祥龙1,2,黎明政1,杨少荣3,林鹏程1,王春伶1,张  晨1,2,高  欣1*   

  1. (1. 中国科学院水生生物研究所,中国科学院水生生物多样性与保护重点实验室, 湖北 武汉 430072;2. 中国科学院大学,北京 100049;3.中国三峡建设管理有限公司 ,四川 成都 610041 )
  • 出版日期:2022-03-20 发布日期:2022-04-07

Temporal Variation of Fish Metacommunity Structure in Poyang Lake

JIANG Xiang-long1,2,LI Ming-zheng1,YANG Shao-rong3,WANG Chun-ling1,ZHANG Chen1,2,GAO Xin1   

  1. (1.The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. China Three Gorges Construction Management, Chengdu 610041, China )
  • Online:2022-03-20 Published:2022-04-07

摘要: 集合群落理论旨在从空间角度探索物种组成和生物多样性形成机制,同时集合群落结构也具有时间动态特征。于2010年4月和2019年5月,在鄱阳湖湖区的9个局部区域开展鱼类资源调查,分析鄱阳湖的鱼类集合群落结构特征和时间变化、驱动因素以及关键区域和物种。结果显示,2010和2019年分别采集到鱼类55种和52种,种类组成没有显著差异(P>0.05);从2010年至2019年,鱼类集合群落从Clementsian结构转变为Gleasonian结构,表明虽然鱼类种类组成分布依然沿着环境梯度变化,但是局域群落之间相似度增加,有同质化的趋势;β多样性(βtotal)从0.36减少到0.34,物种交替占比(βrepl)从57.5%增加到63.2%;局域间的β多样性从0.50~0.91减少到0.33~0.81。2010年,与长江干流之间的距离、有无支流汇入等环境因素和空间因素对β多样性(βtotal、βrepl和βrich)影响均不显著(P>0.05),2019年则有显著影响(P<0.05)。较高β多样性贡献值的区域(Local Contribution to Beta Diversity, LCBD)从湖区中部转变为通江水道。物种贡献指数(Species Contributionto Beta Diversity, SCBD)较高的物种从鲇、草鱼、刀鲚、中华花鳅、贝氏鱼餐转变为银鲴、中华刺鳅、鳊、中华花鳅、泥鳅。结果表明,近十年来,江湖鱼类群落之间的相互作用和鱼类扩散是鄱阳湖湖区鱼类集合群落结构特征和关键区域发生改变的主要原因。同时,过度捕捞、生境退化也可能对鄱阳湖鱼类群落结构造成影响。为了保护鄱阳湖以及长江中下游泛滥平原的鱼类多样性,建议减少围垦、采砂、污染等人类活动、开展生境退化评估和修复、恢复江湖连通等保护措施。

Abstract: Metacommunity theory aims to explore the formation mechanisms of species composition and biodiversity from the spatial perspective, while temporal dynamics also contribute to metacommunity structure. In this study, we investigated the characteristics, temporal variations and drivers of fish metacommunity structure, as well as the key locations and species that contributed more to β diversity by conducting the field surveys in July 2010 and March 2019 in the nine locations of the Poyang Lake. Our analysis indicated that there were the apparent variations between 2010 and 2019. 55 and 52 species were separately collected in 2010 and 2019. The species compositions differed significantly (P<0.05). The structure of the fish metacommunity changed from Clementsian to Gleasonian gradient, which implied that although the species compositions of the local communities always changed along the environmental gradient, the similarities between the local communities increased from 2010 to 2019, and there was a trend of homogenization. β-diversity (βtotal) decreased from 0.36 to 0.34 and βrepl increased from 57.5% to 63.2%. β-diversity among the locations decreased from 0.50-0.91 to 0.33-0.81. βtotal, βrepl and βrich were not significantly affected by environmental factors such as the distance from the main stream of the Yangtze River and whether there are tributaries converging or not and spatial factors in 2010 (P>0.05), but significantly affected by environmental and spatial factors in 2019 (P<0.05). The locations with high Local Contribution to Beta Diversity (LCBD) shifted from the lateral channel between Yangtze River and Poyang Lake. The species with high Species Contribution to Beta Diversity (SCBD) were Silurus asotus,Ctenopharyngodon idella,Coilia nasus,Cobitis sinensis and Hemiculter bleekeri in 2010, while the species with high SCBD were Xenocypris argentea,Sinodella sinensis,Parabramis pekinensis,Cobitis sinensis and Misgurnus anguillicaudatus in 2019. The results indicated that the interaction between fish communities and fish dispersal caused the changes of fish community structure and key sites in Poyang Lake area in recent ten years. At the same time, according to the existing research results, overfishing and habitat degradation may also affect the fish community structure in Poyang Lake. In order to protect the fish diversity in the Poyang Lake and the middle-lower Yangtze River floodplain, it was suggested to reduce human activities, such as reclamation, sand mining, and pollution discharge, to carry out habitat degradation assessment and restoration, and to restore connectivity between rivers and lakes.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王锐, 余涛, 杨忠芳, 侯青叶, 曾庆良, 马宏宏. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(07): 1460 .
[2] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[3] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[4] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[5] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[6] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[7] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[8] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[9] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[10] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .