长江流域资源与环境 >> 2022, Vol. 31 >> Issue (8): 1664-1676.doi: 10.11870/cjlyzyyhj202208002

• 创刊三十周年纪念专辑 • 上一篇    下一篇

近30年三峡库区用地格局变化与人地系统演化

刘彦随1,2,璩路路1, 3   

  1. (1. 中国科学院地理科学与资源研究所,北京100101;2. 中国科学院大学资源与环境学院,北京100049;3. 重庆大学公共管理学院,重庆400044)
  • 出版日期:2022-08-20 发布日期:2022-09-16

Land Use Pattern Change and Human-earth System Evolution in  Three Gorges Reservoir Area in Recent 30 Years

LIU Yan-sui 1,2,QU Lu-lu1,3   

  1. (1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Public Policy and Administration, Chongqing University, Chongqing 400044, China)
  • Online:2022-08-20 Published:2022-09-16

摘要: 中国三峡工程建设造就了三峡库区、带来了区域土地利用的显著变化。探究三峡库区用地格局及其演变规律,对于优化国土空间布局、创新人地系统调控路径具有重要的理论价值和现实意义。基于1990~2020 年三峡库区系列遥感影像数据,利用空间探测、统计分析等方法,揭示了近30年三峡库区用地格局变化,探明了主导驱动机制和实现库区人地系统协调路径。研究表明: (1)近30年来三峡库区以耕地和林地为主体景观,平均占比分别为37.64%、47.12%,建设用地占比<2%,林地、草地、水域等具有重要生态功能的生态用地占比高达60%。(2)研究区以长江为带状中心向边缘地带,各用地类型具有明显的梯度变化特征,林地占比增多,连接度降低,形状趋于规则并呈整体化趋势,而建设用地和耕地斑块破碎但聚集度增强。(3)1990~2020年间,研究区耕地、草地分别减少4.01 %、21.27%,林地和建设用地分别增加2.48%、477.4%,整体景观趋于破碎化、景观多样性升高,在以人文和政策因素为主的驱动下,表现为生态恢复趋势,总体呈现生态经济复合型转变,人地关系也从不协调的矛盾状态趋向协调共生。(4)三峡库区实现人地系统协调路径为创新“三化”(系统化、集约化、高效化)战略体系,优化“三生”(生产、生活、生态)空间,促进地域空间重构与功能整合,实现“三态”(质态、形态、业态)相对平衡;创设立体生态产业化区域集成路径,推动库区人地系统耦合与协调发展;创建库区人地系统协同观测体系,推进监测网络化、地理工程化、决策智能化; 构建关键要素地段多级关联管控体系,全面提升区域系统多尺度多情景多途径综合应对能力。

Abstract: The three Gorges Reservoir Area(TGRA) has undergone significant land use change due to construction of the Three Gorges project in China, which results in a series of impacts on human economic activities and natural ecosystems. Exploring the pattern of land use pattern and its evolution in the TGRA has important theoretical value and practical significance for optimizing the territorial space pattern and innovating the regulation path of the human earth system. Hence, we used remote sensing image data of four epochs from 1990 to 2020 to investigate pattern of land use dynamics in the TGRA based on space exploration and statistical analysis. Additionally, we explored the leading driving mechanism and the path that achieve the coordination of human-earth system for the TGRA. The results showed that:(1) The main land use types for the TGRA are cultivated land(37.64%) and forest land(47.12%), while the built-up land is with the proportion of less than 2%.The ecological land such as forest land, grassland, and water area is as high as 60%.(2) Each land type for the TGRA shows obvious gradient distribution from belt-shaped center to edge, in which forest land proportion increases with more regular shape and weaker connectivity degree, while built-up land and cultivated land are fragmented but more aggregated.(3) From 1990 to 2020, the cultivated land and grassland decreased by 4.01% and 21.27%, respectively, and the forest land and built-up land increased by 2.48% and 477.4%, respectively. The degree of overall landscape fragmentation and landscape diversity have increased. Driven by humanistic and policy factors, it shows the trend of ecological restoration, which generally presents the compound transformation of the ecological economy, and the human-earth relationship also tends to be harmonious and symbiotic.(4) The ways to realize the coordination of the human-earth system in the TGRA include innovating the strategic system of “three modernizations”(systematization, intensification and efficiency), optimizing the “production-living-ecological” space, promoting the reconstruction and functional integration of regional space, and realizing the balance among quality, space and industry form; constructing a three-dimensional ecological industrialization regional integration path to promote the coupling and coordinated development of human-earth system in the reservoir area; exploring the collaborative observation system in the reservoir area, promotingnetwork monitoring, geographic engineering and intelligent decision-making; building a multi-level related management and control system for key element areas, and improving the comprehensive response ability of the regional system in multi-scale, multi-situation and multiple ways.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 璐, 董 捷, 张俊峰. 长江经济带城市土地利用效率地区差异及形成机理[J]. 长江流域资源与环境, 2018, 27(08): 1666 .
[2] 钟业喜, 傅 钰, 朱治州, 王晓静.  基于母子企业联系的上市公司网络结构研究——以长江中游城市群为例[J]. 长江流域资源与环境, 2018, 27(08): 1725 .
[3] 陆砚池 方世明. 均衡和效率双重视角下武汉市主城区公园绿地空间布局优化研究[J]. 长江流域资源与环境, , (): 0 .
[4] 危小建 陈竹安 张蕾 江平 吴芳. 引入城市扩张干扰效应的生态服务价值化方法改进[J]. 长江流域资源与环境, , (): 0 .
[5] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[6] 胡森林 滕堂伟 袁华锡 周灿. 长三角城市群汽车企业空间集聚与发展绩效[J]. 长江流域资源与环境, , (): 0 .
[7] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[8] 张小峰, 闫昊晨, 岳遥, 卢雅婷.  

50年金沙江各区段年径流量变化及分析 [J]. 长江流域资源与环境, 2018, 27(10): 2283 -2292 .

[9] 李晟铭 刘吉平 宋开山. 基于Landsat影像巢湖蓝藻水华暴发时空变化特征其驱动因素分析[J]. 长江流域资源与环境, , (): 0 .
[10] 程谅, 郭忠录, 秦嘉惠. 长期施肥对小麦—玉米轮作红壤抗蚀性的影响[J]. 长江流域资源与环境, 2019, 28(01): 212 -221 .