长江流域资源与环境 >> 2023, Vol. 32 >> Issue (10): 2060-2071.doi: 10.11870/cjlyzyyhj202310006

• 区域可持续发展 • 上一篇    下一篇

要素区际流动对土地绿色生产效率的影响 ——以武汉城市圈为例

单玉红,韩  晴   

  1. (华中农业大学公共管理学院,湖北 武汉 430070)
  • 出版日期:2023-10-20 发布日期:2023-10-26

Effects of Interregional Flow of Factors on Land Green Production Efficiency: A Case Study of Wuhan Urban Agglomeration

SHAN Yu-hong, HAN Qing   

  1. (School of Public Administration, Huazhong Agricultural University, Wuhan 430070, China)
  • Online:2023-10-20 Published:2023-10-26

摘要: 以武汉城市圈为例,分析要素区际流动对区域土地绿色生产效率的影响;以县域为单元构建武汉城市圈的信息、经济和人口要素流的多要素流空间网络,归纳县域之间多元要素的流动特征。测算各县域的土地绿色生产效率,并使用空间误差模型验证要素流动对土地绿色生产效率的影响,在此基础上进一步使用地理加权回归模型分析这种影响力的空间分异情况。研究结果:(1)武汉城市圈要素流网络总体上呈现为典型的“核心-边缘”特征,但已初步形成天门-仙桃-潜江这一相对聚集的独立发展的子群区域;(2)流生产空间还处于初级阶段,与传统场空间的契合较高,要素流动尚比较依赖地理距离;(3)武汉城市圈的土地绿色生产效率等级的空间格局与要素流网络的中心度格局并不完全一致,表明要素流对土地绿色生产效率的影响存在区域差异;(4)信息中心度对土地绿色生产效率具有显著的正向促进效应,经济中心度对土地绿色生产效率具有负向效应,人口中心度的影响不显著;(5)GWR模型验证了多元要素流对土地绿色生产效率的影响的区域差异。研究结论:(1)继续完善信息高速公路的建设,推动要素在更大空间上的流动;(2)要素流动加快的背景下,因地制宜地确定区域差别化的绿色发展对策,自然资源丰富的南部丘陵地区更需尽快提升科技和管理水平,应对经济流动加快;(3)提升区域信息发展水平是当前提高土地绿色生产效率最有效手段,应尽快提升城市圈整体信息化水平;人口流方面,应聚焦创新型人才和高质量人才的流动问题。

Abstract: Taking Wuhan Urban Agglomeration as an example, this paper analyzed the influence of interregional flow of factors on regional land green production efficiency. The spatial network of multi-factor flow, economic and population factor flows in Wuhan Urban Agglomeration was constructed by taking counties as units. The multi-factor flow characteristics among counties were summarized. The land green production efficiency of each county was measured, and the spatial error model was used to verify the influence of factor flow on the land green production efficiency. On this basis, the geographical weighted regression model was further used to analyze the spatial differentiation of this influence. The results were as follows: (1) the factor flow network of Wuhan Urban Agglomeration presented a typical “core-edge” feature in general. A relatively clustered and independently developed subgroup area of Tianmen-Xiantao-Qianjiang had been initially formed. (2) The flow production space was still in its initial stage, which was in good agreements with the traditional field space. The flow of factors still depended on geographical distances. (3) The spatial pattern of land green production efficiency level in Wuhan Urban Agglomeration was not completely consistent with the centrality pattern of factor flow network, which indicated that the influence of factor flow on land green production efficiency was different for different regions. (4) The degree of information centrality had significant positive effects on land green production efficiency, the degree of economic centrality had negative effects on land green production efficiency, while the effects of population centrality were not obvious. (5) The GWR model verified the regional deviations of the influence of multiple factor flow on the green production efficiency. The following conclusions were reached: (1) Continue to improve the construction of information highway to promote the factor flow in a larger range of space. (2) Under the background of accelerating factor flow, regional differentiated green development countermeasures should be determined according to local conditions. The southern hilly areas which are rich in natural resources should be focusing on the urgent improvement of the level of science and technology and management to cope with the accelerating economic flow. (3) Improving regional information development level is the most effective means to improve land green production efficiency at present, and the overall informatization level of urban circle should be improved as soon as possible. In terms of population flow, the flow of innovative and high-quality talents should be paid attention.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 童庆蒙 张露 张俊飚. 土地流转能否提升农民生活满意度?——来自湖北省江汉平原地区的经验证据[J]. 长江流域资源与环境, , (): 0 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 周晟吕, 李月寒, 胡 静, 封竞男. 基于问卷调查的上海市大气环境质量改善的支付意愿研究[J]. 长江流域资源与环境, 2018, 27(11): 2419 -2424 .
[6] 屈小娥. 中国生态效率的区域差异及影响因素——基于时空差异视角的实证分析[J]. 长江流域资源与环境, 2018, 27(12): 2673 -2683 .
[7] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 张亚飞, 廖和平, 李义龙, . 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, 2019, 28(04): 757 -767 .
[10] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .