长江流域资源与环境 >> 2025, Vol. 34 >> Issue (08): 1840-.doi: 10.11870/cjlyzyyhj202508016

• 生态环境 • 上一篇    下一篇

基于碳汇目标的乔木林地树种规划研究——以三封寺镇为例

邹宇1,徐峰1,2*,陈英睿3   

  1. (1.湖南大学建筑与规划学院,湖南 长沙 410000;2.丘陵地区城乡人居环境科学湖南省重点实验室,湖南 长沙 410000;3.中南林业科技大学林学院,湖南 长沙 410000)
  • 出版日期:2025-08-20 发布日期:2025-09-01

Tree Species Planning for Arboreal Forest Land Based on Carbon Sink Goals: A Case Study of Sanfengsi Town

ZOU Yu1,XU Feng1,2,CHEN Ying-rui3   

  1. (1. School of Architecture and Planning, Hunan University, Changsha 410000, China;
    2. Hunan Key Laboratory of Sciences of Urban and Rural Human Settlements in Hills Areas, Changsha 410000, China;
    3. College of Forestry, Central South University of Forestry and Technology, Changsha 410000, China)
  • Online:2025-08-20 Published:2025-09-01

摘要: 在全球气候变化的背景下,提升森林碳汇能力是应对气候变暖的重要手段。研究提出了基于碳汇目标的乔木林地树种规划策略,并以湖南省岳阳市华容县三封寺镇为例,通过BP神经网络构建了适合本地环境的树种(组)生长模型,综合分析了不同树种(组)在各个小班的碳汇潜力。同时,利用D-ANP方法结合土地使用、交通区位、林地质量等多种因素,对1 862个乔木林地小班进行了造林适宜度评价,并制定了合适的树种替换顺序。研究结果表明:(1)不同树种(组)的碳汇能力存在显著差异,在单一树种(组)造林时,研究区内楝类、枫香和檫木表现出较强的固碳能力,研究期内分别为202 242、184 669、177 884 tCO2e,而柏木和栎类表现相对较弱,分别为95 386、74 527 tCO2e。(2)优化的树种配置可以显著提升区域碳汇总量,通过科学的树种规划,2021~2041年研究区域的碳汇量可从116 924 tCO2e提升到259 590 tCO2e,达到现有水平的222.01%。(3)多因子综合分析有助于稳定碳汇增长,树种替换过程中的分阶段规划有助于保持碳汇量的平稳过渡,尤其是在碳汇效率较高的树种逐步替换低效树种时,能够显著提升区域碳汇能力并确保区域碳汇的稳定性。研究结果为乔木林地的树种规划与管理提供了重要的参考依据和实践指导,具有广泛的应用价值。

Abstract: In the context of global climate change, enhancing forest carbon sink capacity is a crucial measure to mitigate global warming. This study proposed a tree species planning strategy for arboreal forest land based on carbon sink objectives. Taking Sanfengsi Town, Huarong County, Yueyang City in Hunan Province as a case study, a BP neural network was used to construct growth models for tree species (or species groups) suited to the local environment. This was to enable a comprehensive analysis of the carbon sink potential of different species across various forest plots. Additionally, the D-ANP method was applied to evaluate the afforestation suitability of 1862 forest plots by integrating factors such as land use, transportation accessibility, and forest quality, which helped to establish an appropriate sequence for species replacement. The results indicated that: (1) There were significant differences in the carbon sink capacities of different tree species (or species groups). In monoculture afforestation, Cedrela, Liquidambar, and Phoebe exhibited strong carbon sink potential, contributing 202242 tCO2e, 184669 tCO2e, and 177884 tCO2e, respectively. In contrast, Cupressus and Quercus contributed a lower value of 95386 tCO2e and 74527 tCO2e, respectively. (2) Optimization of tree species configurations could significantly increase the overall regional carbon sink. Through scientific tree species planning, the carbon sink potential of the study area for the period of 2021-2041 could be increased from the originally projected value of 116924 tCO2e to 259590 tCO2e, which was an increase to 222.01% of the original one. (3) A comprehensive multi-factor analysis supported the stable growth of the carbon sink. The phased planning of tree species replacement ensured a smooth transition in carbon sink capacity, especially for the case of the replacement of low-efficiency species by the high-efficiency species. These findings provided valuable reference and practical guidance for tree species planning and management in arboreal forest lands, with a potential broad applicability.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!