长江流域资源与环境 >> 2025, Vol. 34 >> Issue (10): 2274-.doi: 10.11870/cjlyzyyhj202510011

• 自然资源 • 上一篇    下一篇

水电开发背景下金沙江下游周边植被覆盖时空变化及影响因素研究

肖欣怡1,2,林亮3,邓鑫欣4,董先勇4,王娟1,伍小刚1,潘开文1,张林1*   

  1. (1.中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室,四川 成都 610213;2.中国科学院大学,北京 100049; 3.日喀则市湿地保护中心,西藏 日喀则 857000; 4中国三峡建工(集团)有限公司,北京101100)
  • 出版日期:2025-10-20 发布日期:2025-10-23

Spatiotemporal Dynamics of Vegetation Coverage around the Lower Jinsha River under the Development of Hydropower

XIAO Xin-yi1,2,LIN Liang3,DENG Xin-xin4,DONG Xian-yong4,WANG Juan1,#br# WU Xiao-gang1,PAN Kai-wen1,ZHANG Lin1   

  1. (1.Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3. Xigaze Wetland Conservation Center, Xigaze 857000, China; 4. China Three Gorges Construction Engineering Corporation, Beijing 101100, China)
  • Online:2025-10-20 Published:2025-10-23

摘要: 金沙江下游地区生态地位重要,建有世界最大的水电基地,研究其植被覆盖时空变化,可为流域的生态保护和高质量发展提供参考。采用2000~2022年MODIS数据的NDVI(归一化植被指数),运用Theil-Sen Median趋势分析、BEAST(Bayesian Estimator of Abrupt change, Seasonality, and Trend,贝叶斯突变、季节性和趋势估计器)和地理探测器模型等方法,分析金沙江下游周边植被覆盖在电站不同建设阶段的时空变化及驱动因素。结果表明:(1)研究期间,金沙江下游周边植被NDVI呈波动上升,溪洛渡-向家坝电站段(溪向段)和乌东德-白鹤滩电站段(乌白段)NDVI分别从0.460和0.432增加至0.515和0.476。电站建成后,溪向段和乌白段植被覆盖变化趋势均以改善为主,研究区内明显改善和轻微改善的区域合计占比达到85.25%和66.93%。(2)溪向段和乌白段周边NDVI的趋势分量经历了5次突变,表现出单调型增加、中断型增加以及由减到增等非线性变化特征,其中大坝蓄水时间与NDVI突变降低时间较为一致。(3)海拔、气温、坡度和降水是影响溪向段周边植被NDVI变化的主要驱动因子,而乌白段则受海拔、蒸散发、气温和降水的影响较大。土地利用、夜间灯光和人口等社会经济影响因素在建库后的影响力上升。海拔与气候和社会经济因子之间存在显著的交互影响作用, 表现出双因子增强和非线性增强效应。

Abstract: The lower Jinsha River region holds significant ecological importance and is home to the world’s largest hydropower base. Understanding the spatiotemporal dynamics of vegetation coverage in this area can provide valuable insights for ecological conservation and sustainable development in the basin. This study analyzed vegetation coverage changes and associated influencing factors across different stages of hydropower development (2000–2022), using MODIS NDVI (Normalized Difference Vegetation Index) data. We employed methods of Theil-Sen Median trend analysis, BEAST (Bayesian Estimator of Abrupt change, Seasonality, and Trend), and the Geographical Detector model. The results revealed that: (i) Over the past 23 years, vegetation NDVI around the lower Jinsha River region exhibited a fluctuating increase. NDVI increased from 0.460 to 0.515 in the Xiluodu-Xiangjiaba segment (Xi-Xiang section) and from 0.432 to 0.476 in the Wudongde-Baihetan segment (Wu-Bai section). Following the completion of the hydropower station, vegetation improvement predominated, with the areas of significant and slight improvement accounting for 85.25% and 66.93% of the study region, respectively. (ii) Trend components of NDVI in the Xi-Xiang and Wu-Bai sections experienced five abrupt changes, and the decline consistently coincided with reservoir impoundment periods. Nonlinear NDVI change pattern, such as monotonic increases, interrupted increases, and shifts from decline to increase, were observed. (iii) Elevation, temperature, slope, and precipitation were the key drivers of NDVI changes in the Xi-Xiang section, while elevation, evapotranspiration, temperature, and precipitation significantly influenced the Wu-Bai section. Socioeconomic factors, including land use, night-time light, and population, showed an increased influence after reservoir construction. Significant interactions between elevation, climatic, and socioeconomic factors were observed, which exhibited dual-factor enhancement and nonlinear effects.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!