长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1613-1620.doi: 10.11870/cjlyzyyhj201509024

• 生态环境 • 上一篇    

近50 a三江源地区蒸发量的变化特征及其影响因子分析

祁栋林, 李晓东, 肖宏斌, 周万福, 苏文将, 胡爱军, 李璠   

  1. 青海省气象科学研究所, 青海 西宁 810001
  • 收稿日期:2014-11-19 修回日期:2015-01-07 出版日期:2015-09-20
  • 作者简介:祁栋林(1967~),男,高级工程师,主要从事大气成分和天气气候变化研究.E-mail:qidl007@163.com
  • 基金资助:
    国家自然科学基金地区科学基金项目(41161009、41165008)

Study on changing characteristics and impact factor of evaporation over three-river source area in recent 50 years

QI Dong-lin, LI Xiao-dong, XIAO Hong-bin, ZHOU Wan-fu, SU Wen-jiang, HU Ai-jun, LI Fan   

  1. Institute of Qinghai Meteorological Science Research, Xining 810001, China
  • Received:2014-11-19 Revised:2015-01-07 Online:2015-09-20

摘要: 选用青海省三江源地区1964~2013年14个气象台站观测的基本气象数据,利用线性倾向性估计和Mann-Kendall检验方法等分析了三江源地区蒸发皿蒸发量的时空变化和变化趋势,并以完全相关分析方法进行蒸发量上升成因分析。结果表明:三江源地区年蒸发量总体呈显著上升趋势,其线性变化速率为30.1 mm/10 a,夏秋冬季蒸发量均呈显著上升变化,春季变化趋势不明显,夏季和秋季蒸发量上升对年蒸发量上升贡献最大;逐月蒸发量变化趋势均增加,但幅度各异;冬季蒸发量在2011年发生了突变,其余各季和年均未发生突变.蒸发量月际变化规律明显,表现为双峰型分布,双峰出现在5月和7月,最小值出现在1月;季节变化也十分明显,夏季蒸发量最大,其次为春季和秋季,冬季蒸发量最少,表明春夏两季蒸发量的多少对三江源地区水循环起重要作用。年和四季蒸发量呈现出西北部少,东南部及东北部多的分布特点,气候变化速率分布自西向东逐渐增大。蒸发量年际变化不剧烈,年蒸发量变异系数从西北向东南逐渐增大,四季蒸发量变异系数空间分布明显不同。年蒸发量与平均气温总体上呈正相关,与气温日较差、相对湿度呈负相关,平均气温上升、气温日较差和相对湿度下降是三江源地区蒸发量上升的主要因素。

关键词: 蒸发皿蒸发量, 平均气温, 相对湿度, 气温日较差

Abstract: Based on the general meteorological data recorded by 14 stations from 1964 to 2013 in the Three-River Source Area, the spatial and temporal variation and trend of evaporation were analyzed using linear trend estimation and Mann-Kendall abrupt change test, and the causes of increasing evaporation were analyzed by the full correlation analysis. The results showed that the annual evaporation was increasing significantly in Three-River Source Area, and the linear change rate was 30.1 mm/10 a. The change of evaporation in summer, fall and winter was significant. The evaporation in summer and fall contributed to annual evaporation mainly. The monthly evaporation was generally increasing, but the rate different. The winter evaporation was changing abruptly in 2011. The other seasons and annual changing were not abrupt. The monthly evaporation was not significant, distributing double peaks, and peaks appeared in May and July, the minimum was in January. Seasonal change was obvious. The max evaporation was present in summer, secondly in spring and fall, minimum in winter. That showed evaporation in spring and summer played an important role on hydrologic cycle in Three-River Source Area. Annual and seasonal evaporation showed the northwest was less, the southeast and northeast was more. Climate change rate increased from west to east. The change of annual evaporation was not acute, the rates were increasing from northwest to southeast. The rates of seasonal evaporation distributed differently in space. Annual evaporation was positively correlated with average temperature, but had negative correlations with daily range of temperature and relative humidity. The main reasons of evaporation decline are the rise of average temperature, and the decline of daily range of temperature and relative humidity.

Key words: evaporation over evaporating basin, average temperature, relative humidity, daily range of temperature

中图分类号: 

  • P332
[1] IPCC.Climate change 2007: The physical science basis: Summary for policy makers[EB/OL].[2007].http://ipcc.ch/SPM2feb07.pdf.
[2] LIU B H, XU M, HENDERSON M, et al.A spatial analysis of pan evaporation trends in China, 1955-2004[J].Journal of Geophysics Research, 2004, 109(D15): D15102.
[3] PETERSON T C, GOLUBEV V S, GROISMAN P Y.Evaporation losing its strength[J].Nature, 1995, 377(6551): 687-688.
[4] 申双和,盛 琼.45年来中国蒸发皿蒸发量的变化特征及其成因[J].气象学报,2008,66(3):452-460.
[5] 左洪超,李栋梁,胡隐樵,等.近40 a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系[J].科学通报,2005,50(11):1125-1130.
[6] 刘 波,马柱国,丁裕国,等.中国北方近45年蒸发变化的特征及与环境的关系[J].高原气象,2006,25(5):840-848.
[7] 王艳君,姜 彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势[J].自然资源学报,2005,20(6):864-870.
[8] 邱新法,刘昌明,曾 燕,等.黄河流域近40年蒸发皿蒸发量的气候变化特征[J].自然资源学报,2003,18(4):437-442.
[9] 吴必文,温华洋,叶朗明,等.安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J].长江流域资源与环境,2009,18(7):620-624.
[10] 刘 蓓.43年来青海省蒸发皿蒸发量变化及其影响因子[J].干旱区研究,2010,27(6):892-897.
[11] 申红艳,马明亮,汪青春,等.1961-2010年青海高原蒸发皿蒸发量变化及其对水资源的影响[J].气象与环境学报,2013,29(6):87-94.
[12] 李 林,朱西德,周陆生,等.三江源地区气候变化及其对生态环境的影响[J].气象,2004,30(8):18-22.
[13] 魏凤英.现代气候统计诊断与预测技术[M].第2版.北京:气象出版社,2007.
[14] 韩军彩,张秉祥,高 祺,等.石家庄市蒸发皿蒸发量的变化特征及其影响因子分析[J].干旱气象,2009,27(4):340-345.
[1] 付晓辉, 肖刚, 姜玉印, 高亮. 近53年宜昌市霾的演变特征及气象因子诊断[J]. 长江流域资源与环境, 2010, 19(2): 164-.
[2] 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-.
[3] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[4] 丁 斌,顾显跃,缪启龙. 长江流域近50年来的气温变化特征[J]. 长江流域资源与环境, 2006, 15(4): 531-536.
[5] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .