长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 420-428.doi: 10.11870/cjlyzyyhj201603008

• 自然资源 • 上一篇    下一篇

青藏高原东缘的隆升及其水系的响应

李奋生1,2, 赵国华1,2, 李勇1,2, 梁明剑3, 闫亮1,2, 颜照坤1,2, 李敬波1,2, 郑立龙1,2   

  1. 1. 成都理工大学地球科学学院, 四川 成都 610059;
    2. 成都理工大学油气藏地质及开发工程国家重点实验室, 四川 成都 610059;
    3. 四川省地震局, 四川 成都 610041
  • 收稿日期:2014-06-06 修回日期:2014-07-31 出版日期:2016-03-20
  • 作者简介:李奋生(1978~),男,副教授,博士研究生,主要从事第四纪地质学研究. E-mail: lifensheng@163.com
  • 基金资助:
    国家自然科学基金项目"汶川地震驱动的崩塌、滑坡和泥石流的河流响应过程研究"(41172162)、"芦山地震的构造特征与地表响应研究"(41340005)

THE UPLIFT OF THE LONGMEN SHAN AND THE DRAINAGE RESPONSE

LI Fen-sheng1,2, ZHAO Guo-hua1,2, LI Yong1,2, LIANG Ming-jian3, YAN Liang1,2, YAN Zhao-kun1,2, LI Jing-bo1,2, ZHENG Li-long1,2   

  1. 1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. Earthquake Administration of Sichuan Province, Chengdu 610041, China
  • Received:2014-06-06 Revised:2014-07-31 Online:2016-03-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No. 41172162 and 41340005)

摘要: 本文基于ASTER GDEM数据,采用简单数学函数拟合龙门山地区15条河流的河流纵剖面形态,并结合基岩水力侵蚀模型来分析龙门山不同段落的地形形态特征。初步获得以下几点认识:(1)通过对龙门山地区河流纵剖面的分析,龙门山整体上具有较强的隆升速率,导致这一地区强烈的河流侵蚀作用;(2)龙门山中段和南段的河流双对数图以上凸型为主,说明该区域未达到均衡状态,处于前均衡期;(3)龙门山北段的河流双对数图呈直线形态,说明该区域达到均衡状态,处于均衡期;(4)龙门山中段和南段具有更强的构造活动性、更高的隆升速率,控制了该地区地貌、水系演化过程,并且导致这一地区容易发生地质灾害。

关键词: 水力侵蚀模型, 河流纵剖面, 地形均衡, 构造运动, 龙门山造山带, 青藏高原东缘

Abstract: The Longmen Shan is located in the eastern margin of the Qinghai-Tibetan Plateau. The eastern margin of the Tibetan Plateau is composed of three large-scale geomorphic units: the Tibetan Plateau, the Longmen Shan mountain range and the piedmont alluvial plain (the Western Sichuan Basin) shown respectively from NW to SE. The Longmen Shan borders the eastern margin of Tibetan Plateau. It has a length of about 500km from NE to SW, and a width of about 30km from NW to SE. The difference in relief between the Longmen Shan and the piedmont region is greater than 4000m, with the peak elevation of the mountain range being about 4984m. The elevation of the piedmont ranges only between 450 and 710m. The Longmen Shan is the region with the maximum change in altitude on the edge of the Tibetan Plateau, comprising a series of roughly parallel imbricated thrust belts including the Maowen, Beichuan and Pengguan faults from NW to SE, and has the typical features of a progressive or onward-spread thrust-nappe structure. The Ms 8.0 Wenchuan earthquake of May 12, 2008, in the Longmen Shan mountain range area in China, led to two roughly parallel NE-trending thrust and strike-slip surface ruptures of the Beichuan, Pengguan and the Xiaoyudong faults. Thus, this area has been one of the best places to study the relationships about tectonic-geomorphy-water system. Stream-power incision model is often used to analyze whether the orogenic terrain has been to the equilibrium. This article presents the extraction and analysis of the 15 bedrock channel longitudinal section of the Longmen Shan. By using mathematical functions fitting with the morphological characteristics of longitudinal section, this article takes the relationship between bed rock channel slope (S) and the catchment area (A) to analyze the rivers in Longmen Shan in the eastern margin of the Qinghai-Tibet Plateau. The study has shown that there are 9 logarithmic function lines, 5 exponential function lines and 1 linearity line. The bilogarithmic graph (S-A Figure) of the rivers in Longmen Shan has 9 convex lines, 1 notching line and 5 straight lines, which has shown that the major bedrock river bed elevation of this area had been grown (dz/dt > 0), clined (dz/dt < 0) and unchanged (dz/dt=0) with time. The bilogarithmic graph (S-A Figure) of the south and middle parts at Longmen orogenic terrain is epirelief indicated that this area has not been to the equilibrium and it stays at pre-equilibrium. The bilogarithmic graph (S-A Figure)of the north part is straight indicated that this area has been to its equilibrium. Matching with the clear activity of the middle and south fracture parts at Longmen Shan tectonic zone, the results has shown the expanding to the east of Qinghai-Tibetan Plateau in time and space.

Key words: stream-power incision model, longitudinal profile, steady topography, tectonic movement, Longmen Shan orogenic belt, the eastern margin of the Qinghai-Tibetan Plateau

中图分类号: 

  • P31
[1] 王乃樑, 韩慕康. 构造地貌学的理论、方法、动向与应用[C]//中国地理学会. 中国地理学会第一次构造地貌学术讨论会论文选集. 北京:科学出版社, 1984:1-9.[WANG N L, HAN M K. The theory, method, application and trend of tectonic geomorphology[C]//Compilation of Geographical Society of China. Proceedings of the First Tectonic Geomorphology Symposium Papers of the Geographical Society Chinese. Beijing:Science Press, 1984:1-9.]
[2] 严钦尚, 曾昭璇. 地貌学[M]. 北京:高等教育出版社, 1985:1-10.[YAN Q S, ZENG Z X. Geomorphology[M]. Beijing:Higher Education Press, 1985:1-10.]
[3] 励强, 陆中臣, 袁宝印. 地貌发育阶段的定量研究[J]. 地理学报, 1990, 45(1):110-120.[LI Q, LU Z C, YUAN B Y. Quantitative study of the stage AF geomorphological evolution[J]. Acta Geographica Sinica, 1990, 45(1):110-120.]
[4] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉:中国地质大学出版社, 1995:1-15.[CAO B X. Geomorphology and quaternary geology[M]. Wuhan:The Press of China University of Geosciences, 1995:1-15.]
[5] 王岸, 王国灿. 构造地貌及其分析方法述评[J]. 地质科技情报, 2005, 24(4):7-12, 20.[WANG A, WANG G C. Review on morphotectonic and its analytical methods[J]. Geological Science and Technology Information, 2005, 24(4):7-12, 20.]
[6] SUMMERFIELD M A. Geomorphology and global tectonics[M]. London:John Wiley & Sons, 2000:1-20.
[7] BURBANK D W, ANDERSON R S. Tectonic geomorphology[M]. Massachusetts:Blackwell Science, 2001:1-11.
[8] BURCHFIEL B C, CHEN Z L, LIU Y P, et al. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 1995, 37(8):661-735.
[9] CHEN Z L, BURCHFIEL B C, LIU Y P, et al. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. Journal of Geophysical Research, 2000, 105(B7):16215-16227.
[10] DENSMORE A L, ELLIS M A, LI Y, et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(4), doi:10.1029/2006TC001987.
[11] LI Y, ZHOU R J, DENSMORE A L, et al. The geology of the eastern Margin of the Qinghai-Tiben Plateau[M]. Beijing:Geological Publishing House, 2006.
[12] 李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势[J]. 科学通报, 1999, 44(2):211-214.[LI C A, YIN H F, YU Q W. Evolution of drainage systems and its developing trend in connection with tectonic uplift of Eastern Kunlun Mt.[J]. Chinese Science Bulletin, 2000, 45(20):1904-1908.]
[13] SPITZ W J, SCHUMM S A. Tectonic geomorphology of the Mississippi Valley between Osceola, Arkansas and Friars Point, Mississippi[J]. Engineering Geology, 1997, 46(3/4):259-280.
[14] HOLBROOK J, SCHUMM S A. Geomorphic and sedimentary response of rivers to tectonic deformation:a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings[J]. Tectonophysics, 1999, 305(1/3):287-306.
[15] 汤国安, 刘学军, 闾国年. 数字高程模型及地学分析的原理与方法[M]. 北京:科学出版社. 2005.[TANG G A, LIU X J, LU G N. The principle and method of digital elevation model and geo science analysis[M]. Beijing:Science Press, 2005.]
[16] ENGLAND P, MOLNAR P. Right-lateral shear and rotation as the explanation for strike-slip faulting in Eastern Tibet[J]. Nature, 1990, 344(6262):140-142.
[17] AVOUAC J P, TAPPONNIER P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10):895-898.
[18] 张会平, 刘少峰. 利用DEM进行地形高程剖面分析的新方法[J]. 地学前缘, 2004, 11(3):226.[ZHANG H P, LIU S F. A new method of topographic elevation profile analysis using DEM[J]. Earth Science Frontiers, 2004, 11(3):226.]
[19] 邹斌文, 马维峰, 龙昱, 等. 基于ArcGIS的条带剖面提取方法在地貌分析中的应用[J]. 地理与地理信息科学, 2011, 27(3):42-44.[ZOU B W, MA W F, LONG Y, et al. Extraction method of swath profile based on ArcGIS and its application in landform analysis[J]. Geography and Geo-Information Science, 2011, 27(3):42-44.]
[20] 惠凤鸣, 田庆久, 李应成. Aster数据的DEM生产及精度评价[J]. 遥感信息, 2004(1):14-18.[HUI F M, TIAN Q J, LI Y C. Production and accuracy assessment of DEM from ASTER stereo image data[J]. Remote Sensing Information, 2004(1):14-18.]
[21] 钱程, 韩建恩, 朱大岗, 等. 基于ASTER-GDEM数据的黄河源地区构造地貌分析[J]. 中国地质, 2012, 39(5):1247-1260.[QIAN C, HAN J E, ZHU D G, et al. An analysis of geomorphologic characteristics of the Yellow River source region based on ASTER-GDEM[J]. Geology in China, 2012, 39(5):1247-1260.]
[22] 张学儒, 官冬杰, 牟凤云, 等. 基于ASTER GDEM数据的青藏高原东部山区地形起伏度分析[J]. 地理信息与科学, 2012, 28(3):11-14.[ZHANG X R, GUAN D J, MOU F Y, et al. Analysis on the relief amplitude based on ASTER GDEM data in mountain area of Eastern Tibetan Plateau[J]. Geography and Geo-Information Science, 2012, 28(3):11-14.]
[23] SNOW R S, SLINGERLAND R L. Stream profile adjustment to crustal warping:nonlinear results from a simple model[J]. The Journal of Geology, 1990, 98(5):699-708.
[24] HACK J T. Studies of longitudinal stream profiles in Virginia and Maryland[R]. Reston, VA.:U.S. Geological Survey, 1957, 294B:45-97.
[25] SNOW R S, SLINGERLAND R L. Mathematical modeling of graded river profiles[J]. The Journal of Geology, 1987, 95(1):15-33.
[26] 赵洪壮, 李有利, 杨景春, 等. 天山北麓河流纵剖面与基岩侵蚀模型特征分析[J]. 地理学报, 2009, 64(5):563-570.[ZHAO H Z, LI Y L, YANG J C, et al. The longitudinal profiles of the Ten Rivers in North Tianhan Mountains and their tectonic significance[J]. Acta Geographica Sinica, 2009, 64(5):563-570.]
[27] CHEN Y C, SUNG Q, CHENG K Y. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan:tectonic implications based on stream-gradient and hypsometric analysis[J]. Geomorphology, 2003, 56(1/2):109-137.
[28] ANDERSON R S. Evolution of the Santa Cruz Mountains, California, through tectonic growth and geomorphic decay[J]. Journal of Geophysical Research, 1994, 99(B10):20161-20179.
[29] WHIPPLE K X, TUCKER G E. Implications of sediment-flux-dependent river incision models for landscape evolution[J]. Journal of Geophysical Research, 2002, l07(B2):2039
[30] WHIPPLE K X. Fluvial landscape response time:how plausible is steady-state denudation?[J]. American Journal of Science, 2001, 301(4/5):313-325.
[31] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):151-185.
[32] 陈彦杰, 宋国城, 陈昭男. 非均衡山脉的河流水力侵蚀模型[J]. 科学通报, 2006, 51(7):865-869.[CHEN Y C, SUNG G C, CHEN Z N. Stream-power incision model in non-steady-state mountain ranges:An empirical approach[J]. Chinese Science Bulletin, 2006, 51(22):2789-2794.]
[33] STRAHLER A N. Quantitative analysis of watershed geomorphology[J]. Transactions, American Geophysical Union, 1957, 38(6):913-920.
[34] KIRBY E, WHIPPLE K. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 1999, 29(5):415-418.
[35] KIRBY E, WHIPPLE K X, TANG W Q. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau:inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research, 2004, 108(B4), doi:10.1029/2001jb000861.
[1] 贾铁飞, 王峰, 张猛. 长江中游尺八湖现代沉积物营养元素富集的环境意义[J]. 长江流域资源与环境, 2016, 25(08): 1256-1263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾 群, 蔡述明. 武汉市水资源可持续利用评价[J]. 长江流域资源与环境, 2005, 14(4): 429 -434 .
[2] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[3] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[4] 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598 .
[5] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[6] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[7] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[8] 莫宏伟, 任志远, 谢红霞. 东南丘陵土地利用变化及驱动力研究——以衡阳市为例[J]. 长江流域资源与环境, 2004, 13(6): 551 -556 .
[9] 姚书春,薛 滨,夏威岚. 洪湖历史时期人类活动的湖泊沉积环境响应[J]. 长江流域资源与环境, 2005, 14(4): 475 -480 .
[10] 林建伟,王里奥, 赵建夫,张 军,袁 辉. 三峡库区生活垃圾的重金属污染程度评价[J]. 长江流域资源与环境, 2005, 14(1): 104 -108 .