长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 957-964.doi: 10.11870/cjlyzyyhj201606012

• 生态环境 • 上一篇    下一篇

基于水电梯级开发的河流生态健康研究

李卫明1, 艾志强1, 刘德富1,2, 周晓明3   

  1. 1. 三峡大学水利与环境学院, 湖北 宜昌 443002;
    2. 湖北工业大学资源与环境学院, 湖北 武汉 430074;
    3.宜昌市水利水电局, 湖北 宜昌 443002
  • 收稿日期:2015-09-24 修回日期:2016-01-28 出版日期:2016-06-20
  • 作者简介:李卫明(1979~),男,博士,副教授,主要从事水力学及河流动力学、生态水力学方面研究.E-mail:lwm000001@126.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(51309139);三峡库区生态环境教育部工程研究中心开放基金项目(2015KF-05)

RESEARCH ON RIVER ECO-HEALTH BASED ON HYDROPOWER CASCADE DEVELOPMENT

LI Wei-ming1, AI Zhi-qiang1, LIU De-fu1,2, ZHOU Xiao-ming3   

  1. 1. College of Hydropower and Environment Engineering, China Three Gorges University, Yichang 443002, China;
    2. Colloge of Resource and Environment, Hubei University of Technology, Wuhan 430074, China;
    3. Yichang City Water Conservancy and Hydropower Office, Yichang 443002, China
  • Received:2015-09-24 Revised:2016-01-28 Online:2016-06-20
  • Supported by:
    National Natural Science Foundation of China (Grant No: 51309139);Three Gorges Reservoir Eco-environment Engineering Research Center Foundation (Grant.No. 2015KF-05)

摘要: 为进一步了解水电开发对河流健康的影响,本文以雅砻江下游水电梯级开发为例,构建河流健康评价指标体系,选择无人为干扰和干扰较小的河流为参照,以指标变化率衡量水电梯级开发前后河流受扰动程度,分别采用综合评价法和赋值评分法进行了定量评价。综合评价结果显示,雅砻江下游河段的综合健康指数为0.71,该研究区域在丰水期、平水期和枯水期的综合健康指数分别为0.74、0.70和0.69,均处于亚健康状态;赋值评分法结果显示建库前的河流健康指数(River health index,RHI)为19.1,等级为健康,建库后为14.3,等级为亚健康,两种方法评价结果基本一致。本文以期完善河流健康评价体系,并为生态修复提供依据。

关键词: 雅砻江, 生态系统健康, 结构熵权法, 赋值评分法, 完整性

Abstract: The development of hydropower has destroyed the integrity of the basin ecological system. In order to evaluate the effects aroused by cascade development of hydropower stations to the health of watershed eco-system through quantitative analysis, this paper constructs a comprehensive watershed health evaluation index system within 6 aspects, which separately is based on the integrity of hydrology, the integrity of physical structure, the integrity of chemicals, the integrity of terrestrial organism, the integrity of aquatic organism as well as the integrity of ecological service function. Relying on this system, the structural entropy method is used to calculate the weight of the index and the weighted average method is used to calculate the overall health index of river basin. In order to know the variation relationship among the indexes after cascade reservoir construction, the property of the indexes are analyzed and used to demonstrate the variance ratio. Then this paper sets a case study taken an example of the downstream of Ya-long basin and compares all indexes' variation in high flow period, normal level period and rainless period before and after the construction of cascade hydropower station. At last, the paper is aimed at evaluating the health condition of the eco-system health in the downstream of Ya-long basin after the standardizing treatment of the data. The data shows that the overall health index of the Ya-long river in the downstream is 0.69. While the health index in different stages are different as follows: in high flow period the health index is 0.72; in normal level period is 0.69; in rainless period is 0.68; all of them are in the state of subhealth. That is to say, the study demonstrates that the physical structure integrity and biological integrity in this region are seriously damaged while chemical integrity and hydrological integrity vary relatively small to some degree. However, the integrity of ecological service is improved largely. Seeding from different period, we can conclude that the comprehensive index in high flow period is relative high, so the ecological flow that aquatic organism needed is insured, the biological integrity maintain in a high degree, the ecological benefit improve a lot and the ability of basin water purification is strengthened; while in normal level period and in rainless period, the chemical index changes a lot compared with high flow period, so the integrity of chemical decreases relatively. Moreover, the flow in normal level period is close to nature condition, the index like water temperature and dryness degree variance ratio is low, so the hydrological integrity is relative high. In rainless period, these index vary within wide limit, so the comprehensive health index in normal level is a litter more higher than rainless period. In brief, this paper furthers the study of elements that influenced watershed eco-system by cascade hydropower stations. And some suggestions are provided to serve as reference in evaluation of watershed and reason in restoration.

Key words: Ya-long basin, ecosystem health, weighted average method, value assignment graded method, integrity

中图分类号: 

  • X828
[1] KARR J R. Assessment of biotic integrity using fish communities[J]. Fisheries, 1981, 6(6): 21-27.
[2] LENAT D R, BARBOUR M T. Using benthic macroinvertebrate community structure for rapid, costeffective, water quality monitoring: rapid bioassessment[M]//LOEB S L, SPACIE A. Biological Monitoring of Aquatic Systems. Boca Raton: Lewis, 1994: 187-215.
[3] WRIGHT J F, SUTCLIFFE D W, FURSE M T. Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques[M]. Ambleside, Cumbria, England: Freshwater Biological Association, 2000: 125-142.
[4] RAVEN P J, FOX P, EVERARD M, et al. River habitat survey: a new system for classifying rivers according to their habitat quality[M]//BOON P J, HOWELL D L. Freshwater Quality: Defining the Indefinable. Edinburgh: The Stationery Office, 1997.
[5] SUDARYANTI S, TRIHADININGRUM Y, HART B T, et al. Assessment of the biological health of the Brantas River, East Java, Indonesia using the Australian River Assessment System (AUSRIVAS) methodology[J]. Aquatic Ecology, 2001, 35(2): 135-146.
[6] LADSON A R, WHITE L J, DOOLAN J A, et al. Development and testing of an Index of Stream Condition for waterway management in Australia[J]. Freshwater Biology, 1999, 41(2): 453-468.
[7] PLAFKIN J L, BARBOUR M T, PORTER K D, et al. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish[R]. Washington, DC: EPA, 1989.
[8] 朱卫红, 曹光兰, 李 莹, 等. 图们江流域河流生态系统健康评价[J]. 生态学报, 2014, 34(14): 3969-3977. [ZHU W H, CAO G L, LI Y, et al. Research on the health assessment of river ecosystem in the area of Tumen River Basin[J]. Acta Ecologica Sinica, 2014, 34(14): 3969-3977.]
[9] 陈俊贤, 蒋任飞, 陈 艳. 水库梯级开发的河流生态系统健康评价研究[J]. 水利学报, 2015, 46(3): 334-340. [CHEN J X, JIANG R F, CHEN Y. Evaluation on the health of river ecosystem under the cascade development of reservoirs[J]. Journal of Hydraulic Engineering, 2015, 46(3): 334-340.]
[10] 解雪峰, 蒋国俊, 肖 翠, 等. 基于模糊物元模型的西苕溪流域生态系统健康评价[J]. 环境科学学报, 2015, 35(4): 1250-1258. [XIE X F, JIANG G J, XIAO C, et al. Evaluation of ecosystem health in Western Tiaoxi river watershed based on matter element model[J]. Acta Scientiae Circumstantiae, 2015, 35(4): 1250-1258.]
[11] 陆志强, 李吉鹏, 章耕耘, 等. 基于可变模糊评价模型的东山湾生态系统健康评价[J]. 生态学报, 2015, 35(14): 4907-4919. [LU Z Q, LI J P, ZHANG G Y, et al. Ecosystem health assessment based on variable fuzzy evaluation model in Dongshan Bay, Fujian, China[J]. Acta Ecologica Sinica, 2015, 35(14): 4907-4919.]
[12] 李文君, 邱 林, 陈晓楠, 等. 基于集对分析与可变模糊集的河流生态健康评价模型[J]. 水利学报, 2011, 42(7): 775-782. [LI W J, QIU L, CHEN X N, et al. Assessment model for river ecology health based on Set Pair Analysis and Variable Fuzzy Set[J]. Journal of Hydraulic Engineering, 2011, 42(7): 775-782.]
[13] 张 晶, 董哲仁, 孙东亚, 等. 河流健康全指标体系的模糊数学评价方法[J]. 水利水电技术, 2010, 41(12): 16-21. [ZHANG J, DONG Z R, SUN D Y, et al. Assessment method for a fuzzy theory based complete river health index system[J]. Water Resources and Hydropower Engineering, 2010, 41(12): 16-21.]
[14] 陈 敏. 水能梯级开发生态影响评价阈值研究[D]. 成都: 四川大学硕士学位论文, 2011. [CHEN M. The study on the threshold of ecological impact assessment for cadcade hydropower development[D]. Chengdu: Master Dissertation of Sichuan University, 2011.]
[15] 赵小杰, 郑 华, 赵同谦, 等. 雅砻江下游梯级水电开发生态环境影响的经济损益评价[J]. 自然资源学报, 2009, 24(10): 1729-1739. [ZHAO X J, ZHENG H, ZHAO T Q, et al. Evaluation of eco-environmental impact of hydropower development in the downstream of Yalong River[J]. Journal of Natural Resources, 2009, 24(10): 1729-1739.]
[16] 程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7): 1225-1228. [CHENG Q Y. Structure entropy weight method to confirm the weight of evaluating index[J]. Systems Engineering-Theory & Practice, 2010, 30(7): 1225-1228.]
[17] 李绍才, 孙海龙, 龙 凤. 水能梯级开发生态影响评价[M]. 北京: 科学出版社, 2014. [LI S C, SUN H L, LONG F. The Ecological Affection of River Cascade Development[M]. Beijing: Science Press, 2014.]
[18] 邓其祥. 雅砻江下游地区的鱼类区系和分布[J]. 动物学杂志, 1996, 31(5): 5-12. [DENG Q X. The fish subarea and distribution in the downstream of Yalong basin[J]. Chinese Journal of Zoology, 1996, 31(5): 5-12.]
[19] 杨青瑞, 陈求稳, 马徐发. 雅砻江下游鱼类资源调查及保护措施[J]. 水生态学杂志, 2011, 32(3): 94-98. [YANG Q R, CHEN Q W, MA X F. Status of fish resources and protection measures in the lower reaches of Yalong River[J]. Journal of Hydroecology, 2011, 32(3): 94-98.]
[1] 周天舒, 张亚, 唐文乔, 王丽卿. 基于鱼类完整性指数的黄浦江水生态系统评价[J]. 长江流域资源与环境, 2016, 25(06): 895-903.
[2] 谢楚芳, 舒潼, 刘毅, 任文彬, 蒋金辉, 杨劭. 以植被生物完整性评价梁子湖湖滨湿地生态系统健康[J]. 长江流域资源与环境, 2015, 24(08): 1387-1394.
[3] 席酉民, 刘静静, 沈力. 国外流域管理的成功经验对雅砻江流域管理的启示[J]. 长江流域资源与环境, 2009, 18(7): 635-.
[4] 王振华,马海州,周笃珺,沙占江. 南水北调雅砻江工程区自然环境评价[J]. 长江流域资源与环境, 2007, 16(5): 650-650.
[5] 魏 婷, 吴长年. 一种工业园区生态系统健康评价方法及其应用[J]. 长江流域资源与环境, 2007, 16(5): 680-680.
[6] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102-106.
[7] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[3] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[4] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[5] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[8] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[9] 姚书春,薛 滨,夏威岚. 洪湖历史时期人类活动的湖泊沉积环境响应[J]. 长江流域资源与环境, 2005, 14(4): 475 -480 .
[10] 林建伟,王里奥, 赵建夫,张 军,袁 辉. 三峡库区生活垃圾的重金属污染程度评价[J]. 长江流域资源与环境, 2005, 14(1): 104 -108 .