长江流域资源与环境 >> 2018, Vol. 27 >> Issue (08): 1765-.doi: 10.11870/cjlyzyyhj201808012

• 生态环境 • 上一篇    下一篇

中国工业废水排放格局及其驱动因素

庄汝龙1,宓科娜2,梁龙武3   

  1. (1.华东师范大学中国现代城市研究中心,上海 200062;2.上海师范大学城市发展研究院,上海 200234;3.中国科学院地理科学与资源研究所,北京 100101)
  • 出版日期:2018-08-20 发布日期:2018-11-09

China’s Industrial Wastewater Discharge Pattern and Its Driving Factors

ZHUANG Rulong1, MI Kena2, LIANG Longwu3   

  1. (1. The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China; 2. Institute of Urban Study, Shanghai Normal University, Shanghai 200234, China; 3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Online:2018-08-20 Published:2018-11-09

摘要: 基于2005~2015年中国31个省(市、自治区)的环境统计数据,运用GIS空间分析方法和SARAR计量模型系统刻画了工业废水排放的时空格局演变与空间集聚特征,并进一步揭示其驱动因素及区域差异性。结果表明:(1)研究时段内,工业废水排放逐年减少,但废水排放总量不断上升,表明中国废水排放主导源已经发生替变;(2)中国工业废水排放量总体呈现“东南高、西北低”的省际格局特征,胡焕庸线可看作工业废水排放“热区”与“冷区”的分界线;(3)中国工业废水排放表现出明显的空间集聚特征,集聚趋势逐年加强;(4)SARAR模型估计结果显示,城镇化推进、第二产业发展、人口增长依次是中国工业废水排放的主要驱动因素。与全国相比,热区的SARAR模型估计结果与上述结论基本一致,但各驱动因素的影响效应略有不同

Abstract: Based on the environmental statistics of 31 provinces (municipalities and autonomous regions) in China from 2005 to 2015, Using GIS spatial analysis method and SARAR econometric model, the temporal and spatial pattern of industrial wastewater discharge and the characteristics of spatial agglomeration are described, and their driving factors and regional differences are further revealed. The results showed that:(1)During the research period, the discharge of industrial wastewater decreased year by year, but the total amount of wastewater discharged continuously increased, indicating that the main source of wastewater discharge in China has been transformed.(2)China’s industrial wastewater discharge shows a spatial pattern of “southeast high and northwest low”, and Hu Huanyong line can be regarded as the dividing line between China’s industrial wastewater discharge “hot zone” and “cold zone”.(3)China’s industrial wastewater discharge has shown a clear spatial positive correlation, and spatial agglomeration trend increased year by year;(4)Estimates of SARAR model showed that urbanization rate, proportion of the secondary industry and number of resident population are main driving forces of China’s industrial wastewater discharge. Compared with the whole country, the SARAR model estimation results of the hot zone are basically the same as the above conclusions, but the effect of each driving force is slightly different

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董林水, 张旭东, 周金星, 李冬雪. 青藏铁路沿线北段植被物种丰富度及盖度的动态变化[J]. 长江流域资源与环境, 2008, 17(4): 551 .
[2] 张志才, 陈 喜, 石 朋, 董贵明, 束龙仓, 马建良. 贵州喀斯特峰丛山体土壤水分布特征及其影响因素[J]. 长江流域资源与环境, 2008, 17(5): 803 .
[3] 罗莎, 胡鸿兴, 成水平, 贺锋, 吴振??20. 武汉市金银湖水鸟多样性及其与水环境关系的初步研究[J]. 长江流域资源与环境, 2010, 19(06): 671 .
[4] 谢贤健 | 屈小斌 | 兰代萍 | 胡学华. 中小城市土地利用空间结构分析的尺度效应[J]. 长江流域资源与环境, 2011, 20(07): 897 .
[5] 张晓可|刘学勤|刘文治. 巢湖东部水源区湖滨带植物群落结构及植被修复策略研究[J]. 长江流域资源与环境, 2012, 21(Z2): 25 .
[6] 涂洁|刘琪璟|王辉民|廖迎春|李燕燕. 江西千烟洲木荷液流特征及其与气象因子的关系[J]. 长江流域资源与环境, 2014, 23(02): 267 .
[7] 李一曼, 修春亮. 浙江省陆路交通可达性与经济社会协调性研究[J]. 长江流域资源与环境, 2014, 23(06): 751 .
[8] 王雷宏,黄庆丰,蒲发光,周美生,陆发存. 天马自然保护区大别山五针松与群落中优势种的种间关系[J]. 长江流域资源与环境, 2014, 23(07): 918 .
[9] 马彩虹, 赵晶, 谭晨晨. 基于IPCC方法的湖南省温室气体排放核算及动态分析[J]. 长江流域资源与环境, 2015, 24(10): 1786 -1792 .
[10] 龚志军, 李艳, 张敏, 蔡永久, 薛庆举, 许浩. 大型浅水湖泊太湖霍甫水丝蚓次级生产力的研究[J]. 长江流域资源与环境, 2015, 24(12): 2054 -2060 .