长江流域资源与环境 >> 2019, Vol. 28 >> Issue (05): 1121-1131.doi: 10.11870/cjlyzyyhj201905012

• 农业发展 • 上一篇    下一篇

环鄱阳湖区农田土壤有机碳影响因素空间分布格局分析及制图研究

邹润彦1,周宏冀1,郭熙2,但承龙1,吕添贵1,李洪义1*   

  1. (1.江西财经大学旅游与城市管理学院土地资源管理系,江西 南昌 330013;2.江西省鄱阳湖流域农业资源与生态重点实验室,江西 南昌 330045)
  • 出版日期:2019-05-20 发布日期:2019-05-22

Spatial Distribution and Mapping of Influencing Factors of Farmland Soil Organic Carbon in the Poyang Lake Region

 ZOU Run-yan1,ZHOU Hong-ji1, GUO Xi2, DAN Cheng-long1, LV Tian-gui1, LI Hong-yi1   

  1. (1.Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China;2.Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Nanchang 330045, China)
  • Online:2019-05-20 Published:2019-05-22

摘要: 利用地理加权回归(Geographically Weighted Regression,GWR)模型,对环鄱阳湖区农田土壤有机碳(Soil Organic Carbon, SOC)影响因子的空间分布格局进行系统分析,结合克里格插值方法进行土壤有机碳制图研究,同时综合比较了地理加权回归方法(GWRK)与回归克里格(Return Kriging,RK)方法在预测土壤有机碳储量结果之间存在的差异。结果表明:(1)根据Pearson相关性分析结果,所选取的各环境影响因素均与土壤有机碳具有相关性(P<0.01)。(2)通过GWR模型对各影响因素空间分布格局的分析,发现SOC与坡向、年均温度和年均降水呈正相关,与坡度、植被覆盖度呈负相关。(3)GWRK法得到的土壤有机碳含量变化范围为6.35~31.93g·kg-1,接近采样点的实测值;RK方法得到的土壤有机碳含量变化范围在7.41~25.76 g·kg-1,总体空间分布特征与GWRK的结果相似,但RK方法预测的结果较为平滑,与SOC储量实际状况还存在一定差异。(4)GWR的拟合优度R2(0.50)明显高于RK中的R2(0.20); GWRK方法的均方根误差(RMSE)为4.58,小于RK方法的均方根误差5.35,且通过GWRK方法得出的预测结果在制图上结合采样点位置信息,使成图效果更加精细。

Abstract: This study systematically analyzed the spatial distribution of the influencing factors of farmland soil organic carbon (SOC) in the Poyang Lake region by using the geographically weighted regression (GWR) model, and combined kriging interpolation algorithm to produce SOC map. The GWR Kriging (GWRK) and kriging (RK) methods were compared to identify the difference in predicting the SOC reserves. The results showed that: 1) The selected environmental influencing factor was relevant with SOC (P<0.01) according to Pearson correlation analysis; 2) There was a positive correlation between SOC and aspect, annual average temperature, and annual average precipitation, while a negative correlation was observed between SOC and gradient, vegetation coverage; 3) The values of SOC content ranged from 6.35 to 31.93 g kg-1 using the method of GWRK and approached to the measured values of sampling points. The values of SOC content ranged from 7.41 to 2.76 g·kg-1 using the method of RK, and the overall spatial distribution characteristics were similar to the results of GWRK; however, the predicting results of RK were relatively smooth, which differed from the actual state of SOC reserves; 4) The goodness of fit of R2 in GWRK (0.50) was apparently higher than that in RK (0.20). The root mean square error of GWR is 4.58, which was less than the RK (5.35) of RMSE. Additionally, the predicting outcomes obtained using the GWRK reflected the positional information of sampling points, which could make the mapping elaborate.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王毛兰,| 胡春华,周文斌,. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1): 138 .
[2] 姚成胜, 朱鹤健. 基于能值理论的福建省农业系统动态研究[J]. 长江流域资源与环境, 2008, 17(2): 247 .
[3] 王伟霞, 张磊, 董雅文, 黄文钰. 基于沿江开发建设的生态安全格局研究——以九江市为例[J]. 长江流域资源与环境, 2009, 18(2): 186 .
[4] 杜 耘, 陈 萍,Kieko SATO, Hajime AOE, 何报寅. 洪湖水环境现状及主导因子分析[J]. 长江流域资源与环境, 2005, 14(4): 481 -485 .
[5] 左倬, 由文辉, 汪冬冬. 上海青浦区不同用地类型河流滨岸带生境及植物群落组成[J]. 长江流域资源与环境, 2011, 20(1): 116 .
[6] 张玉龙| 夏小玲| 陈正洪, 党海山| 张全发. 基于开源GIS的长江流域晴日辐射反演[J]. 长江流域资源与环境, 2011, 20(09): 1073 .
[7] 何 海 |叶建春 |陆桂华. 太湖流域水资源阈值探析[J]. 长江流域资源与环境, 2012, 21(9): 1080 .
[8] 王洪铸 |宋春雷 |刘学勤 |李 堃. 巢湖湖滨带概况及环湖岸线和水向湖滨带生态修复方案[J]. 长江流域资源与环境, 2012, 21(Z2): 50 .
[9] 张天宇 | 陈正洪 | 孙 佳 | 程炳岩 | 任永建 | 张建平. 三峡库区近百年来气温变化特征[J]. 长江流域资源与环境, 2012, 21(Z2): 110 .
[10] 林孝松 |陈洪凯 |王先进 |唐红梅 |褚春超 |覃庆梅 |梁学战 |陈远川. 重庆市涪陵区G319公路洪灾风险评估研究[J]. 长江流域资源与环境, 2013, 22(02): 210 .