长江流域资源与环境 >> 2021, Vol. 30 >> Issue (7): 1538-1546.doi: 10.11870/cjlyzyyhj202107002

• 区域可持续发展 • 上一篇    下一篇

多中心作用下大城市房价空间分异的特征及影响因素 ——以合肥市为例

孙  彪1,2,杨  山1,2*   

  1. (1. 南京师范大学地理科学学院,江苏 南京 210023;2. 江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
  • 出版日期:2021-07-20 发布日期:2021-08-03

Characteristics and Influencing Factors of Urban Housing Price Spatial Differentiation Under the Effect of Polycentric Structure: Taking Hefei City as An Example

SUN Biao 1,2,YANG Shan 1,2   

  1. (1. School of Geographical Science, Nanjing Normal University, Nanjing 210023, China; 2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China)
  • Online:2021-07-20 Published:2021-08-03

摘要: 随着城镇化水平迅速提高,大城市通过外延式扩张与内涵式发展逐渐形成了多中心,在多中心作用下城市空间,尤其是房价空间的变化表现出异质性与复杂性。以快速发展的合肥市为例,从不同空间尺度利用地统计法研究城市房价的空间分异特征,并通过构建特征价格模型分析房价空间分异的主导因素,以揭示城市空间结构与房价空间分异的逻辑关联。结果表明:(1)在主城区尺度上,房价空间分布与多中心结构相符,在各中心范围内形成了3个高房价区;(2)在中心区尺度上,各中心区房价呈现出圈层与扇形相混合的分布特征,不同规模等级的中心对其周边房价影响范围的差异,形成了不同的空间变异模式;(3)影响房价空间分异的三类特征中,结构特征与邻里特征在主城区尺度上对房价空间分异产生了较大的作用;(4)不同功能的中心区房价空间分异的主导因素各异,区位特征对旧城中心的影响最大,结构特征与区位特征均对行政中心有较大影响,结构特征是新区中心影响房价最主要的因素。

Abstract: With the rapid improvement of urbanization, large cities have gradually formed a polycentric spatial structure through epitaxial expansion and connotative development. Under the effect of polycentric spatial structure, urban space, especially the change of housing price space, shows heterogeneity and complexity. Taking the fast-developing Hefei City as an example, this paper uses the geostatistical method to study the spatial differentiation characteristics of urban housing prices from different spatial scales, and analyzes the dominant factors of housing price differentiation by constructing the hedonic price model, to reveal the logical relationship between urban spatial structure and housing price space. The results show that: (1) On the scale of the main city, the spatial distribution of housing price is consistent with the polycentric structure, and three high housing price zones are formed in each center; (2) On the scale of central areas, the housing prices in each central area present a mixed distribution of circle layers and and fan-shaped. The difference in the impact scope of centers of different scales on their surrounding housing prices has formed different spatial variation patterns; (3) Among the three types of characteristics that influence the spatial differentiation of house prices, the structural and neighborhood characteristics have great influence on the main city, and scarce landscapes, educational resources and greening rate are the most important factors for spatial differentiation of housing prices in the main city; (4) The main factors of the spatial differentiation of house price in different central areas are various. The location characteristics have the greatest impact on the old city center, and the structural characteristics and location characteristics have a large impact in administrative center. Besides, the structural characteristics are the most important factors affecting housing prices in the center of the new district.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李中强, 王双玲, 杨梅, 徐. 基于生态敏感性分析的湖泊保护与利用——以湖北省斧头湖为例[J]. 长江流域资源与环境, 2010, 19(06): 714 .
[2] 徐长乐| 徐廷廷| 俞琦. 上海海洋科技创新的SWOT分析[J]. 长江流域资源与环境, 2012, 21(07): 797 .
[3] 雷 沛 |张 洪 |单保庆. 丹江口水库典型库湾及支流沉积物重金属污染分析及生态风险评价[J]. 长江流域资源与环境, 2013, 22(01): 110 .
[4] 汤爱萍,万金保,李爽. 基于BMPs的鄱阳湖区小流域农村面源污染控制[J]. 长江流域资源与环境, 2014, 23(07): 977 .
[5] 张梦, 第宝锋, Constantine A. Stamatopoulos, 宋微曦, 王雅潞. 灾变山地环境影响下小流域脆弱性评价研究[J]. 长江流域资源与环境, 2015, 24(06): 1072 -1078 .
[6] 费明哲, 张增信, 原立峰, 王言鑫, 周洋. TRMM降水产品在鄱阳湖流域的精度评价[J]. 长江流域资源与环境, 2015, 24(08): 1322 -1330 .
[7] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560 -566 .
[8] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[9] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[10] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .