长江流域资源与环境 >> 2021, Vol. 30 >> Issue (7): 1695-1703.doi: 10.11870/cjlyzyyhj202107016

• 生态环境 • 上一篇    下一篇

水生植物与水气界面气体交换对岩溶泉水化学及碳循环影响

赵瑞一1,2,黄淑卿1,张月明3,张喻翔1,刘畅1,李芷汀4   

  1.  (1.重庆交通大学建筑与城市规划学院,重庆 400074;2.国土资源部/广西岩溶动力学重点实验室,
    广西 桂林 541004;3.淮安市水利勘察设计研究院有限公司,江苏 淮安223001;4.重庆人文科技学院,重庆 401524)
  • 出版日期:2021-07-20 发布日期:2021-08-03

Effect on Hydrochemistry of Karst Spring Water and Karst Carbon Cycle from Aquatic Plants and Gas Exchange Across Water-air Interface

ZHAO Rui-yi 1,2, HUANG Shu-qing 1, ZHANG Yue-ming 3, ZHANG Yu-xiang 1, LIU Chang 1, LI Zhi-ting 4   

  1. (1. College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China 2.Key Laboratory of
    Karst Dynamics, MLR&GZAR, Institute of Karst Geology, CAGS, Guilin, 541004, China 3.Huai'an Water Conservancy Survey and
    Design Institute Co., Ltd, Huai'an 223001, China 4. Chongqing College of Humanities, Science & Technology, Chongqing 401524, China)
  • Online:2021-07-20 Published:2021-08-03

摘要: 为揭示水生植物光合作用及水气之间气体交换对岩溶水化学及碳循环的影响,在姜家泉沿程选取5个监测点,于2017年12月至2018年11月对其水化学性质进行监测。结果显示:(1)在降水较少的月份,JJQ3的Ca 2+浓度和HCO3 -浓度明显小于JJQ1和JJQ2,并且溶解氧(DO)与电导率(EC)、Ca 2+浓度、HCO 3-浓度之间均呈负相关关系,说明池水处水生植物光合作用将碳酸盐岩溶蚀产生的HCO3-转化成了稳定的有机碳,从而增强了岩溶碳汇效应。(2) JJQ4的Ca 2+和HCO 3-浓度与JJQ1、JJQ2没有明显差异,但pH和溶解氧(DO)却明显高于JJQ1和JJQ2,并且JJQ4处溶解无机碳的稳定碳同位素(δ13CDIC)偏正于JJQ1和JJQ2,这主要是跌水导致水-气之间发生了气体交换。大气中的氧气通过曝气作用进入水中,而水中二氧化碳分压(pCO2)远高于大气,导致水中溶解的CO2脱气。(3)姜家泉水化学受到水生植物光合作用和水-气间气体交换的共同影响,并且在强酸参与下,CO2脱气将进一步减弱岩溶碳汇效应。因此,为准确估算岩溶碳通量,有必要对两种作用方式进行区分。

Abstract: The hydrochemical properties of five points were monthly monitored in Jiangjia Spring from from December 2017 to November 2018, in order to reveal the effect on hydrochemistry of karst spring water and karst carbon cycle from photosynthesis of aquatic plants and gas exchange. The results showed that the Ca 2+ concentration and HCO 3- concentration at JJQ3 were significantly low in the months with less precipitation, comparing with those at JJQ1 and JJQ2. Meanwhile the dissolved oxygen (DO) negatively correlated with conductivity (EC), Ca 2+ and HCO3- concentrations. It indicated that HCO3- generated from carbonate dissolution was partly converted into stable organic carbon through photosynthesis of aquatic plants, which enhanced the karst carbon sink. However, the high flow rate could limit the photosynthesis of aquatic plants, resulting in little difference of chemical properties among monitoring points in the month with more precipitation. Despite that HCO3- concentrations at JJQ4 were similar to those at JJQ1 and JJQ2, while the pH and DO at JJQ4 were significantly higher than that at JJQ1 and JJQ2, and the stable isotopes of dissolved inorganic (δ13CDIC) at JJQ4 were heavier than those at JJQ1 and JJQ2. The above phenomenon may attribute to the gas exchange between water and atmosphere because of head fall, which caused that the oxygen in the atmosphere dissolved into the water and the CO2 in the spring water was released into the atmosphere due to high pCO2. The hydrochemistry of Jiangjiaquan were controlled by photosynthesis of aquatic plants as well as gas exchange between water and atmosphere. Although the two factors had similar effects on hydrochemistry, they brought different effects on karst carbon cycle. Especially, CO2 degassing would further weaken the effect of karst carbon sink, at the presence of strong acid such as H2SO4. Therefore, it was necessary to distinguish the two factors, in order to accurately estimate the karst carbon flux.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡明秀, 胡 辉, 王立兵. 武汉市工业“三废”污染状况计量模型研究[J]. 长江流域资源与环境, 2005, 14(4): 470 -474 .
[2] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[3] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[4] 文高辉 杨钢桥. 耕地细碎化对农地整治农户土地权属调整意愿的影响研究[J]. 长江流域资源与环境, , (): 0 .
[5] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[6] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[7] 邢璐平, 方斌, 向梦杰, . 基于GWR模型的江苏省耕地集约利用水平时空变化特征及影响因素[J]. 长江流域资源与环境, 2019, 28(02): 376 -386 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .