长江流域资源与环境 >> 2022, Vol. 31 >> Issue (3): 624-633.doi: 10.11870/cjlyzyyhj202203012

• 自然资源 • 上一篇    下一篇

浅水湖泊水生植物残体降解过程中活性氧物种的产生及其作用分析

刘  新1,陆俊楠1,2,江和龙2,吴定桂1,2,徐华成2,宋  娜2*   

  1. (1.南京林业大学生物与环境学院,江苏高校环境工程优势学科,江苏 南京 210037;2.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏 南京 210008)
  • 出版日期:2022-03-20 发布日期:2022-04-07

Production and Role of Reactive Oxygen Species in the Degradation of Reed Residue under Photo- and Biodegradation

LIU Xin1, LU Jun-nan1,2, JIANG He-long2,WU Ding-gui1,2, XU Hua-cheng2,SONG Na2   

  1. (1. Advantage Disciplines of Environmental Engineering in Jiangsu Universities,College of Biology and the Environment,Nanjing Forestry University,Nanjing 210037,China; 2. State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China)
  • Online:2022-03-20 Published:2022-04-07

摘要: 水生植物是湖泊生态系统中的重要组分,每到秋冬季水生植物大量衰亡,植物残体分解过程对水体生源要素循环有重要影响。大型水生植物残体的分解一直被认为是微生物降解的过程,而光降解在很大程度上被忽视了。主要探究单可见光、单微生物和可见光+微生物联合作用下芦苇残体降解过程中各组分去除效率的差异性及不同条件下的降解机制。结果表明,与单可见光降解或单微生物降解相比,可见光+微生物联合降解在110 d内去除植物残体生物量最多(54.9±2.1%),同时产生更多的活性氧物种(Reactive Oxygen Species,ROS),且残体的各个组分(纤维素、半纤维素和木质素)的去除率与累积生成的ROS均呈正相关性,尤其是其中的难降解组分——木质素。因此,为了更准确地预测水生生态系统的碳循环,需要考虑可见光在植物残体降解中的作用,而对浅水湖泊中水生植物残体降解机理的深入认识将有助于湖泊科学管理和治理修复。

Abstract: Aquatic plant is an important component of lake ecosystem. With the death of aquatic plants in autumn and winter, the decomposition of their residues exerts a major effect on the cycle of biogenic elements in the lake system. Decomposition of plant residues is generally considered as a biologically driven process. However, underlying photodegradation process has been largely ignored. In this study, we investigated the removal efficiency of reed residue and the decomposition mechanism under different processes: microbial degradation, photodegradation, and the combination of bio- and photo-degradation. The result showed that, compared to single treatment of photodegradation or biodegradation, the combination of photo- and biodegradation can remove more litter mass (54.9±2.1%) and produce higher concentration of reactive oxygen species (ROS) within 110 days. In addition, we found that the removal efficiency of each litter components (cellulose, hemicellulose and lignin) exhibits positively correlation with cumulative concentration of ROS concentrations, especially the refractory component lignin. Therefore, in order to acquire more accurate prediction about the dynamics of organic carbon degradation in aquatic ecosystems,the effect of light in the decomposition process of plant residues needs to be taken into consideration. And it is necessary to obtain a deeper understanding of the decomposition mechanism of aquatic plants in shallow lakes, and this will be helpful for the scientific management and remediation of lakes.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[3] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[4] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[5] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[6] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[7] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[8] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .
[9] 田 鹏, 李加林, 史小丽, 王丽佳, 刘瑞清. 浙江省土地利用格局时空变化及生态风险评价[J]. 长江流域资源与环境, 2018, 27(12): 2697 -2706 .
[10] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .