长江流域资源与环境 >> 2023, Vol. 32 >> Issue (10): 2212-2224.doi: 10.11870/cjlyzyyhj202310018

• 生态环境 • 上一篇    

新常态下中国城镇建设用地扩张演变的碳效应及其驱动因素研究

张梅1,3,4,杨雨霏1,黄贤金2*,孟浩1, 3,姜亮亮1   

  1. (1. 南京财经大学经济学院,江苏 南京 210023;2. 南京大学地理与海洋科学学院,江苏 南京 210023;3. 南京财经大学绿色经济发展研究院,江苏 南京 210023;4. 江苏省统一战线理论研究南京财经大学基地,江苏 南京 210023)

  • 出版日期:2023-10-20 发布日期:2023-10-26

Carbon Effects and Driving Factors of Urban Construction Land Expansion in China Under the New Normal

ZHANG Mei1,3,4, YANG Yu-fei1, HUANG Xian-jin2, MENG Hao1,3, JIANG Liang-liang1   

  1. (1. School of Economics, Nanjing University of Finance & Economics, Nanjing 210023, China; 2. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; 3. Green Economy Development Institute, Nanjing University of Finance & Economics, Nanjing 210023, China; 4.Nanjing University of Finance & Economics Base for Jiangsu Province United Front Theory Research, Nanjing 210023, China)
  • Online:2023-10-20 Published:2023-10-26

摘要: 研究城镇建设用地扩张演变的碳效应及其驱动因素,能够为中国实现双碳目标和国土空间规划提供重要参考。然而,由于统计数据的限制,往往难以单独分割城镇建设用地扩张部分的碳效应。聚焦于城镇建设用地扩张部分这一研究主体,利用反演模型分割扩张地区的碳排放,结合空间杜宾面板模型,对新常态下中国城镇建设用地扩张演变的生态和人为碳效应及其空间集聚特征和驱动因素进行了研究。结果表明:(1)新常态下,中国各省级区域城镇建设用地扩张速度变化趋势各异,总体向着区域间更为均衡化的方向发展。(2)城镇建设用地扩张造成的生态碳储量损失总体呈增长趋势,所占土地的生态碳密度呈增高趋势,而新增城镇建设用地所承载的人为碳排放总量和强度呈减少趋势;两者均存在明显的空间集聚特征,前者波动较大,后者较为稳定,呈团块状。(3)根据空间杜宾面板模型的求解结果,技术进步和本地外商投资提高有利于降低新增城镇建设用地碳效应;人口密度、地区富裕程度和产业结构总体表现为正向影响因素;人口密度的空间溢出效应最强,而地区富裕程度的直接效应最强;对外开放的直接效应为负,空间溢出效应为正。(4)建议切实回避对高碳储量土地的占用,借力优质外商的节能环保技术,关注绿色低碳技术研发,善用空间溢出效应,形成更为绿色低碳的城镇建设用地扩张模式。

Abstract: Understanding of carbon effects and driving factors of the expansion and evolution of urban construction lands, can provide important reference for China to achieve the goals of the carbon peaking, carbon neutrality and territorial spatial planning. However, due to the limitations of statistical data, it is often difficult to separate the carbon effects of urban construction land expansion. By employing an inversion model, combined with the spatial Dobbin panel model, this paper comprehensively studied the ecological and anthropogenic carbon effects of urban construction land expansion, and its spatial agglomeration characteristics and the corresponding driving factors in China under the new normal. The results showed that: (1)The expansion rate of urban construction land in China’s provincial regions showed different trends, and was generally developing towards an increased balance among regions.(2)The losses of ecological carbon storage caused by the expansion of urban construction lands were generally increasing, and the ecological carbon densities of the occupied lands were also rising. However, the total amount and intensities of anthropogenic carbon emissions borne by the new urban construction lands presented a decreasing trend. Both ecological and anthropogenic carbon effects of urban construction land expansion had obvious spatial agglomeration characteristics. The former fluctuated strongly, while the latter was relatively stable and presented in the shape of a block.(3)According to results of the spatial Durbin panel model,technological progress and increased local foreign investment were conducive to reducing the carbon effect of newly expanded urban construction land.Population density, regional affluence, and industrial structure were all positively influencing factors.The spatial spillover effect of population density was the strongest, while the direct effect of regional prosperity was the strongest.The direct effect of opening up was negative, while its spatial spillover effect was positive.(4) It was suggested to avoid the occupation of land with high carbon storage, to use the energy conservation and environmental protection technologies of high-quality foreign enterprises, to pay attention to green and low-carbon technology research and development and to make good use of space spillover effects, in order to form a more green and low-carbon pattern of urban construction land expansion.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 崔鑫 靳文佳 王永杰 周立旻 郑祥民. 上海市公园湖泊表层沉积物中汞的特征及其污染评价[J]. 长江流域资源与环境, , (): 0 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[6] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[7] 王刚毅, 刘 杰. 基于改进水生态足迹的水资源环境与经济发展协调性评价——以中原城市群为例[J]. 长江流域资源与环境, 2019, 28(01): 80 -90 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 陈国磊, 田玲玲, 罗静, 蒋亮, 吴益坤, . 长江经济带城市黑臭水体空间分布格局及影响因子[J]. 长江流域资源与环境, 2019, 28(05): 1003 -1014 .