长江流域资源与环境 >> 2025, Vol. 34 >> Issue (1): 126-139.doi: 10.11870/cjlyzyyhj202501010

• 自然资源 • 上一篇    下一篇

基于多时相影像分类的近23 a洪湖水生植被覆盖变化研究

刘李琼1,2 ,熊晶3,张媛3,陆羽仪1,2 ,蔡晓斌1*   

  1. (1. 中国科学院精密测量科学与技术创新研究院环境与灾害监测评估湖北省重点实验室,湖北 武汉 430077;2.中国科学院大学,北京 100049;3.湖北省生态环境监测中心站,湖北 武汉 430071)
  • 出版日期:2025-01-20 发布日期:2025-01-24

Trajectory of Aquatic Vegetation Cover in Honghu Lake in Recent 23 Years Based on Multi-temporal Image Classification

LIU Li-qiong1,2,XIONG Jing3,ZHANG Yuan3, LU Yu-yi 1,2,CAI Xiao-bin1   

  1. (1. Key Laboratory for Environmental and Disaster Monitoring and Evaluation in Hubei, Innovation Academy for 
    Precision Measurement Science and Technology, Wuhan 430077, China;2. University of Chinese Academy of Science, 
    Beijing 100049, China; 3. Ecological Environment Monitoring Center Station of Hubei Province, Wuhan 430071, China)
  • Online:2025-01-20 Published:2025-01-24

摘要: 水生植被作为初级生产者,可以为湖泊提供食物来源和栖息地等重要的生态服务功能。动态监测水生植被对于湖泊保护至关重要。研究基于典型水生植被NDVI物候特征,构建了CART决策树的水生植被分类模型。利用多时相MOD09Q1数据进行分类提取了2000~2022年洪湖水生植被的时空分布信息。结果显示多时相分类方法可有效区分不同类型的水生植被,总体分类精度达85.6%。总体上洪湖水生植被呈现出明显的空间化结构特征,挺水植被菰主要在其西南片区集中分布,莲则在湖岸周边呈零星带状分布。沉水植被则主要分布于挺水植被区向湖心扩散区域及湖泊沿岸湖湾区,整体表现为由外向内的圈层特征。从水生植被的时序变化来看,主要经历了3个阶段。2000~2004年受大面积围网养殖以及高强度人类活动的影响,湖泊的水生植被总体偏少,平均面积在150.56 km2左右。2005~2016年受围网拆除以及湿地生态工程实施,内源污染得到控制,洪湖水生植被逐渐得到恢复,平均面积增至181.85 km2左右,除发生特大旱涝灾害的特殊年份,水生植被面积总体趋于稳定。2017后,受2016年洪水扰动及清漂、圩堤拆除等大范围工程施工引起的底泥扰动、植被破坏,加剧了洪湖水质恶化过程,水生植被面积锐减,平均面积降至100.35 km2,2022年后水生植被面积达到历史最低,近两年水生植被占比维持在10%以下。近23 a水生植被时空变化的监测结果,可为洪湖后续水生植被修复区规划、修复物种的选择提供基础支撑。

Abstract:

Aquatic vegetation, as the primary producer in lakes, provides multiple ecological services such as food sources and habitats. Dynamic monitoring of aquatic vegetation is essential for lake protection. The CART (Classification and Regression Tree) approach was utilized to extract the aquatic vegetation based on the phenological characteristics of different types of vegetation of the multi-temporal MOD09QI NDVI(Normalized Differential Vegetation Index) series. The approach was applied to derive the annual aquatic vegetation maps of the Honghu Lake from 2000 to 2022. The results showed that this approach was effective to distinguish the different types of aquatic vegetation with an overall classification accuracy of 85.6%. The aquatic vegetation generally exhibits a distinct spatial structural characteristic. The emergent vegetation, Zizania latifolia, was concentrated in the southwest lake, while Nelumbo nucifera was scattered in areas around the lakeshore. Submerged vegetation was mainly found from the emergent area towards the lake and the shoreline. In terms of the change trajectory, three main phases were identified. From 2000 to 2004, the aquatic vegetation was relatively scarce, with an average area of 150.56km2. For the second phase of 2005 to 2016, with the implementation of wetland ecological projects to control surrounding pollutions, the aquatic vegetation gradually recovered to an area of 181.85km2. The overall aquatic vegetation area was stable in the normal year without extreme drought and flood in the second phase. After 2017, the average area of aquatic vegetation decreased sharply to 100.35km2. This change might be attributed to the continuously deterioration of water quality, the increase of sediment resuspension that was caused by the dike and debris removal projects, and the flood event in summer 2016. After 2022, the aquatic vegetation area reached the historical lowest, which was below 10% in the last two years. This result provided key information on the potential sites and species that could be used in ecological restoration projects in the future.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李加林,许继琴,童亿勤,杨晓平,张殿发. 杭州湾南岸滨海平原土地利用/覆被空间格局变化分析[J]. 长江流域资源与环境, 2005, 14(6): 709 -713 .
[2] 赵家虎| 高俊峰| 刘聚涛| 许妍. 应用MODIS监测太湖蓝藻水华时空分布特征[J]. 长江流域资源与环境, 2011, 20(12): 1475 .
[3] 章萍|王天琪|钱光人|周文斌|万金保. 膨润土、煤渣在稳定底泥中对上覆水体及底泥pHEhCOD的影响[J]. 长江流域资源与环境, 2014, 23(03): 422 .
[4] 杨云平,李义天,樊咏阳. 长江口前缘沙洲演变与流域泥沙要素关系[J]. 长江流域资源与环境, 2014, 23(05): 652 .
[5] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[6] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[7] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[8] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[9] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[10] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .