长江流域资源与环境 >> 2014, Vol. 23 >> Issue (09): 1295-.doi: 10.11870/cjlyzyyhj201409016

• 自然资源 • 上一篇    下一篇

四湖地区地下水“三氮”含量及时空分布特征分析

张婷,陈世俭,傅娇凤   

  1. (1.中国科学院测量与地球物理研究所,湖北 武汉 430077;2.中国科学院大学,北京 100049)
  • 出版日期:2014-09-20

ANALYSIS OF THREENITROGEN CONCENTRATION AND SPATIALTEMPORAL DISTRIBUTION OF GROUNDWATER IN SIHU REGION

ZHANG Ting1,2,CHEN Shijian1,FU Jiaofeng1,2   

  1. (1. Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China;2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Online:2014-09-20

摘要:

在4次地下水水质监测的基础上,对潜水和浅层承压水的“三氮”含量进行了季节变化和空间差异分析,同时探讨了时空变化的影响因素。分析结果表明:(1)地下水氨氮浓度超标率较高,承压水中浓度明显高于潜水,4次采样结果承压水氨氮浓度超标率均在50% 以上;(2)硝酸盐氮和亚硝酸盐氮含量在承压水中能达到良好的标准,在潜水中超标率高;(3)氨氮浓度季节变化明显,9月份浓度显著高于4、6和11月。硝酸盐氮和亚硝酸盐氮在潜水中6月份浓度最高,在承压水中季节变化不明显;(4)地下水氨氮含量空间变异性强,浓度较高的多集中在流经洪湖的内荆河两侧区域。研究区地下水水质受气象因素、农业活动、农村生活污染以及氧化还原环境的综合影响

Abstract:

Sihu region locates in south of Hubei Province and between middle reaches of the Yangtze River and Dongjing River,which is the important agriculture area in Hubei Province.In Sihu region,groundwater is still the main drinking water source for resident’s life in rural area.In recent years,as the improvement of living standard and the development of industry and agriculture,the pollution in the rural groundwater environment in Sihu region has become a threatening problem.Groundwater circulation is a complex process,especially after the Three Gorge Project was finished.Ammonia (NH4+-N),nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) are the common contaminant in the groundwater.Based on monitoring of groundwater quality for four times in April,June,September and November of 28 samples,the seasonal and spatial changes in concentrations  NH4+-N,NO3--N,NO2--N were analyzed in phreatic water and shallow confined water as well as the influencing factors.The results show as follows:(1) The NH4+-N monitoring results in phreatic groundwater varied from 0.08-0.39 mg/L,0.14-0.39 mg/L,0.32-1.65 mg/L and 0.03-0.50 mg/L while in shallow confined water the monitoring results varied from 0.11-3.19 mg/L,0.10-8.77 mg/L,0.42-11.18 mg/L,0.17-5.27 mg/L.The groundwater NH4+-N concentration in Sihu region exceeds certain limit which is higher in phreatic water than shallow confined water and the exceeding standard rate of NH4+-N concentration in phreatic water is over 50%.(2) The concentrations of NO3--N are low in phreatic water and generally exceed standards in confined water.The exceeding standard rate of NO3--N reached to 83% in June.(3) The concentrations of NO2--N of confined water in the monitoring year mostly reached the class II standards of GB/T14848-9.While in phreatic water the monitoring results which exceed the III class standards accounted 50%、83%、33% and 40%.(4) The results reveal obvious seasonal variability,the NH4+-N concentration in September is higher than the other months; the concentrations of NO3--N and NO2--N in confined water reached the maximum in June.(5) The groundwater NH4+-N concentration has higher spatial variability.The NH4+-N concentration that reaches the National Primary Drinking WaterStandard (≤05 mg/L ) are mostly in the phreatic water samples and distributed in the inter-channel plain.The high concentration mostly centralized in both sides of Neijing River near Honghu Lake.(6) Meteorological factors,agricultural activities,domestic pollution and redox environment have a synthetic impact on groundwater quality of the study area.The concentration of threenitrogen has a close relationship with the dynamic changes of precipitation.The seasonal variability of NO3--N and NO2--N shows that the annual variability of precipitation influenced the phreatic groundwater directly.The intensive use of pesticides and fertilizers as the nonpoint pollutant source and the unregulated sewage emissions as the point pollutant source are the two main pollutant source in the study area

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[5] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .