长江流域资源与环境 >> 2015, Vol. 24 >> Issue (03): 482-.doi: 10.11870/cjlyzyyhj201503019

• 生态环境 • 上一篇    下一篇

集合经验模态分解在长江中下游梅雨变化多尺度分析中的应用

柏玲,陈忠升,赵本福   

  1. (1. 华东师范大学地理信息科学教育部重点实验室,上海 200241, 2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
  • 出版日期:2015-03-20

APPLICATION OF ENSEMBLE EMPIRICAL MODE DECOMPOSITION METHOD IN MULTISCALE ANALYSIS OF MEIYU IN MIDDLELOWER REACHES OF YANGTZE RIVER

BAI Ling1, CHEN Zhongsheng1,2, ZHAO Benfu1   

  1. (1.The Key Lab of Geographic Information Science, Chinese Ministry of Education, East China Normal University, Shanghai 200241, China;2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,Urumqi 830011, China)
  • Online:2015-03-20

摘要:

基于长江中下游流域5个梅雨监测站1961~2012年的日数据,利用集合经验模态分解(EEMD)方法,对研究期内梅雨时间序列进行多尺度的分析,探讨其在不同时间尺度上的振荡模态结构特征。结果表明:近50多年来,长江中下游梅雨变化呈现出显著的年际和年代际尺度振荡特征,在年际尺度上表现出准3 a和6 a的周期变化,而在年代际尺度上显示准13 a和24 a的周期变化;各分量方差〖JP2〗贡献率显示,年际振荡在梅雨长期变化中占据主导地位;自1961年以来,EEMD分解的梅雨长期变化趋势表现出先增加后减少的倒“U”型特征,其中1961~1985年呈上升趋势,1985~2012年呈下降趋势,尤其是在2000年之后的下降趋势最为明显。由此可以看出,EEMD能够有效地揭示梅雨长期序列在不同时间尺度上的变化规律,可用于诊断非线性、非平稳性信号变化的复杂性特征

Abstract:

Ensemble empirical mode decomposition (EEMD) method has been developed suitable for nonlinear and nonstationary signal analysis and it has been proved powerful tool in the long time series analysis. Compared with the wavelet analysis, though the scaling mode of the EEMD method is similar to wavelet transform, the signal resolutions in different frequency domains do not decrease by downsampling. In addition, compared with the EMD method widely used in climate change analysis, EEMD method also solves the problem of mode mixing and it is a good method of screening largescale circulation and nonlinear trend. With the EEMD method, the signal is decomposed into several intrinsic mode functions (IMFs) and the frequencies of IMFs are arranged in decrease order (high to low) after the EEMD processing. When the EEMD method applies to the time series of climate factors, the real climate change signal can be extracted. Specifically, the intrinsic time scale of climate change can be gotten with EEMD method, it is helpful to identify the trend of climate change. Furthermore, for nonstationary time series, EEMD method can not only isolated interannual and interdecade trend from several years of observation sequence, but also separated the general trend of climate change from the time series of climate observation. Therefore, it is helpful to explore the problem of global climate change. In this study, based on daily precipitation time series from 5 Meiyu monitoring stations in the middlelower reaches of the Yangtze River basin from 1961 to 2012, the multiscales characteristics of annual Meiyu were analyzed using EEMD method, and oscillation modal structure characteristics at different time scales were also investigated. We propose the EEMD method to decompose the Meiyu series in the middlelower reaches of the Yangtze River basin during 1961-2012 into several IMFs, then extract the information and get the characteristics of multiscales. Results indicated that in the last more than 50 years, Meiyu change in the middle and lower reaches of the Yangtze River have shown the obvious oscillation characteristics of interannual and interdecadal scales. It exited 3 a and 6 a quasiperiodic changes at interannual scale, whereas 13 a and 24 a quasiperiodic changed at decadal scale. The variance contribution rates of each IMF show that interannual oscillation was dominant in longerterm Meiyu change. The Meiyu in the middle and lower reaches of the Yangtze River overall presented inverted “U” shaped trend, that is to say rose first, and then decreased over time. The Meiyu series during 1961-1985 exhibited upward trends, while during 1985-2012 revealed a downward trend, the downward trend after 2000 was most obvious. Therefore, EEMD method can effectively reveal variation of longterm Meiyu sequence at different time scales and can be used for the diagnosis of nonlinear and nonstationary signal change of complexity

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[3] 李 佳,李思悦,谭 香,张全发. 南水北调中线工程总干渠沿线经过河流水质评价[J]. 长江流域资源与环境, 2008, 17(5): 693 .
[4] 邹丽敏, 王 超, 冯士龙. 玄武湖沉积物中重金属污染的潜在生物毒性风险评价[J]. 长江流域资源与环境, 2008, 17(2): 280 .
[5] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[6] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524 -529 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 张文广,胡远满, 刘 淼,杨兆平,常 禹,李秀珍,杨 孟,问青春, . 基于土地利用变化的生态服务价值损益估算——以岷江上游地区为例[J]. 长江流域资源与环境, 2007, 16(6): 821 .
[9] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51 .
[10] 冯新灵,罗隆诚,邱丽丽,. 成都未来气候变化趋势的R/S分析[J]. 长江流域资源与环境, 2008, 17(1): 83 .