2"岛,城市化水平,土地利用类型,移动监测,上海市," /> 2"岛,城市化水平,土地利用类型,移动监测,上海市,"/> 上海春季近地面大气CO<sub>2</sub>浓度空间分布特征及其影响因素分析

长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1443-1450.doi: 10.11870/cjlyzyyhj201509001

• 区域可持续发展 •    下一篇

上海春季近地面大气CO2浓度空间分布特征及其影响因素分析

朱希扬1,3, 潘晨2,3, 刘敏1,3, 杨芳1,3, 贾文晓1,3, 象伟宁1,3   

  1. 1. 华东师范大学生态与环境科学学院, 上海 200241;
    2. 华东师范大学地理科学学院, 上海 200241;
    3. 华东师范大学上海市城市化生态过程与生态恢复重点实验室, 上海 200241
  • 收稿日期:2014-11-26 修回日期:2015-01-30 出版日期:2015-09-20
  • 作者简介:朱希扬(1990~),男,硕士研究生,主要研究方向为城市生态学.E-mail:zxy_yang@163.com
  • 基金资助:
    国家自然科学基金项目(41201092, 41471076);华东师范大学创新基金项目(78210270, 13902-515492-14001)

Spatial characteristics of near surface CO2 concentration and analysis on its influencing factors in spring in shanghai city

ZHU Xi-yang1,3, PAN Chen2,3, LIU Min1,3, YANG Fang1,3, JIA Wen-xiao1,3, XIANG Wei-ning1,3   

  1. 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
    2. School of Geographic Sciences, East China Normal University, Shanghai 200241, China;
    3. Shanghai Key Lab for Urban Ecological Processes and Eco-restoration, East China Normal University, Shanghai 200241, China
  • Received:2014-11-26 Revised:2015-01-30 Online:2015-09-20
  • Contact: 刘敏,E-mail:mliu@re.ecnu.edu.cn E-mail:mliu@re.ecnu.edu.cn

摘要: 基于移动监测手段获取上海春季典型样带近地面CO2浓度监测数据,在明确近地面CO2浓度空间分布格局的基础上,分析了城市化水平以及土地利用类型对近地面CO2浓度的影响。结果表明上海市春季近地面CO2浓度空间分布呈现西高东低、北高南低的特征,空间异质性较为明显,市中心比郊区高出55.1 μmol/mol(13.3%),存在着明显的城市"CO2"岛现象。城市化水平对于上海市近地面CO2浓度影响较为显著,总体上呈现随城市化水平上升而下降的趋势,距市中心距离每增加1 km,CO2浓度下降1.56 μmol/mol。上海市近地面CO2浓度与5 km范围内下垫面土地利用类型相关性显著,其中近地面CO2浓度与林地以及建设用地覆盖率相关性最高,依次为 -0.64 和0.63。进一步分析表明近地面CO2浓度与土地利用类型的相关性在高度城市化以及城郊区域较高,在中低城市化水平区域较低。

关键词: 近地面CO2浓度, 2"岛')">城市"CO2"岛, 城市化水平, 土地利用类型, 移动监测, 上海市

Abstract: The rapid process of urbanization worldwide has a profound effect on global carbon cycle. It's important to have an explicit understanding of the spatial distribution of CO2 to recognize and control Green-house gases (GHGs) emission, which is helpful to reduce human-induced contribution to global climate change. The study area of this project is set in the metropolitan city of Shanghai with the background of high-intensity of human activities and rapid urbanization. Mobile measuring methodology was used to determine near surface CO2 concentration along typical transects in spring, 2014 by means of near infrared gas analyzer LI-840A, combined with classification of urbanization levels and types of land use information derived from remote sensing data. Qualitative and quantitative analysis of CO2 concentration's response mechanisms to urbanization levels and types of land use are represented in this paper. Data suggested a well-shaped carbon dioxide dome with mean concentration of 445.8±40.5 μmol/mol in the city center, 55.1 μmol/mol (13.3%) higher than that in suburban areas. CO2 concentration exhibited a significant spatial heterogeneity and descended in a sequence with three directions which were northwest, southwest and southeast, respectively. Near surface CO2 has a negative relationship with distance to the city center with a decline of 1.56 μmol/mol per kilometer. In general, Near surface CO2 concentrations dropped rapidly within the range of 20 km from the urban core (DUC) while rather slowly out of the same range(approximately 0.7 μmol/mol/km). Urbanization levels within the territory of Shanghai City have significant impacts on concentrations of near surface CO2. According to the classification of urbanization levels, concentrations with high, middle, low urbanization level and suburban areas are 467.6±44.7, 451.7±41.1, 452.7±34.9 and 426.0±24.8 μmol/mol, respectively. Coverage rate of forested land has the highest correlation with near surface CO2 concentration following by the construction areas, farmland and grassland with the correlation coefficient of -0.64, 0.63, -0.55 and -0.52(P<0.01), respectively. Correlation coefficients between near surface CO2 concentrations and types of land use score higher values in high urbanization and suburban areas than in middle and low urbanization areas.

Key words: near surface CO2 concentration, carbon dioxide dome, urbanization level, types of land use, mobile measuring methodology, Shanghai city

中图分类号: 

  • X831
[1] LE QUÉRÉ C, RAUPACH M R, CANADELL J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geoscience, 2009, 2(12): 831-836.
[2] SETO K C, GVNERALP B, HUTYRA L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16083-16088.
[3] ZHANG X Y, LIU C, NEPAL S, et al. A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud[J]. Journal of Computer and System Sciences, 2014, 80(5): 1008-1020.
[4] 陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):189-204.
[5] IDSO C D, IDSO S B, BALLING JR R C. The urban CO2 dome of Phoenix, Arizona[J]. Physical Geography, 1998, 19(2): 95-108.
[6] BVNS C, KUTTLER W. Path-integrated measurements of carbon dioxide in the urban canopy layer[J]. Atmospheric Environment, 2012, 46: 237-247.
[7] HENNINGER S, KUTTLER W. Near surface carbon dioxide within the urban area of Essen, Germany[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(1/2): 76-84.
[8] SAHAY S, GHOSH C. Monitoring variation in greenhouse gases concentration in Urban Environment of Delhi[J]. Environmental Monitoring and Assessment, 2013, 185(1): 123-142.
[9] IDSO C D, IDSO S B, BALLING JR R C. An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA[J]. Atmospheric Environment, 2001, 35(6): 995-1000.
[10] BALLING JR R C, CERVENY R S, IDSO C D. Does the urban CO2 dome of Phoenix, Arizona contribute to its heat island?[J]. Geophysical Research Letters, 2001, 28(24): 4599-4601.
[11] GEORGE K, ZISKA L H, BUNCE J A, et al. Elevated atmospheric CO2 concentration and temperature across an urban-rural transect[J]. Atmospheric Environment, 2007, 41(35): 7654-7665.
[12] GRATANI L, VARONE L. Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume[J]. Atmospheric Environment, 2005, 39(14): 2619-2624.
[13] 王长科,王跃思,刘广仁.北京城市大气CO2浓度变化特征及影响因素[J].环境科学,2003,24(4):13-17.
[14] 王跃思,王长科,郭雪清,等.北京大气CO2浓度日变化、季变化及长期趋势[J].科学通报,2002,47(14):1108-1112.
[15] 刘 强,王跃思,王明星,等.北京大气中主要温室气体近10年变化趋势[J].大气科学,2005,29(2):267-271.
[16] 赵德华,欧阳琰,齐家国,等.夏季南京市中心-郊区-城市森林梯度上的近地层大气特征[J].生态学报,2009,29(12):6654-6663.
[17] 李燕丽,穆 超,邓君俊,等.厦门秋季近郊近地面CO2浓度变化特征研究[J].环境科学,2013,34(5):2018-2024.
[18] 李燕丽,邢振雨,穆 超,等.移动监测法测量厦门春秋季近地面CO2的时空分布[J].环境科学,2014,35(5):1671-1679.
[19] 上海市统计局.上海统计年鉴2013[M].北京:中国统计出版社,2013.
[20] 王 雷,李丛丛,应 清,等.中国1990~2010年城市扩张卫星遥感制图[J].科学通报,2012,57(16):1388-1403.
[21] 刘纪远,张增祥,徐新良,等.21世纪初中国土地利用变化的空间格局与驱动力分析[J].地理学报,2009,64(12):1411-1420.
[22] BERGERON O, STRACHAN I B. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city[J]. Atmospheric Environment, 2011, 45(8): 1564-1573.
[23] CRAWFORD B, GRIMMOND C S B, CHRISTEN A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area[J]. Atmospheric Environment, 2011, 45(4): 896-905.
[24] BOTTEMA M. Urban roughness modelling in relation to pollutant dispersion[J]. Atmospheric Environment, 1997, 31(18): 3059-3075.
[25] ROTACH M W. On the influence of the urban roughness sublayer on turbulence and dispersion[J]. Atmospheric Environment, 1999, 33(24/25): 4001-4008.
[26] NG E, YUAN C, CHEN L, et al. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong[J]. Landscape and Urban Planning, 2011, 101(1): 59-74.
[27] COUTTS A M, BERINGER J, TAPPER N J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia[J]. Atmospheric Environment, 2007, 41(1): 51-62.
[28] GRIMMOND C S B, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago[J]. Environment Pollution, 2002, 116(Suppl 1): 243-254.
[29] VOGT R, CHRISTEN A, ROTACH M W, et al. Temporal dynamics of CO2 fluxes and profiles over a Central European city[J]. Theoretical and Applied Climatology, 2006, 84(1/3): 117-126.
[30] 史利江,王圣云,姚晓军,等.1994~2006年上海市土地利用时空变化特征及驱动力分析[J].长江流域资源与环境,2012,21(12):1468-1479.
[1] 宁秀红, 赵敏. 土地整治驱动下土地利用和景观格局变化研究——以上海市合庆镇为例[J]. 长江流域资源与环境, 2016, 25(01): 79-87.
[2] 唐昀凯, 刘胜华. 城市土地利用类型与PM2.5浓度相关性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(09): 1458-1463.
[3] 李潭峰, 陈小鸿, 吴娇蓉, 陈 非. 世博会期间上海交通环境承载力调控策略[J]. 长江流域资源与环境, 2008, 17(3): 336-336.
[4] 宋新山, 汪永辉, 秦 艳, 刘振鸿, 吴应玲. 上海新城区构建湿地处理污水的经济技术分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 88-91.
[5] 丰志勇,曾 刚. 上海市工业园区投资环境评价研究[J]. 长江流域资源与环境, 2006, 15(3): 274-280.
[6] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29-33.
[7] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 选. 国内外典型水治理模式及对武汉水治理的借鉴[J]. 长江流域资源与环境, 2007, 16(5): 584 .
[2] 李恒鹏,杨桂山,刘晓玫,万荣荣. 流域土地利用变化的长周期水文效应及管理策略[J]. 长江流域资源与环境, 2005, 14(4): 450 -455 .
[3] 魏显虎,杜 耘,Yasunori NAKAYAMA,薛怀平,任宪友. 基于RS/GIS的四湖地区湖泊水域百年变迁研究[J]. 长江流域资源与环境, 2005, 14(3): 293 -297 .
[4] 廖顺宝,李泽辉. 四川省人口分布与土地利用的关系及人口数据空间化试验[J]. 长江流域资源与环境, 2004, 13(6): 557 -561 .
[5] 董林水, 张旭东, 周金星, 李冬雪. 青藏铁路沿线北段植被物种丰富度及盖度的动态变化[J]. 长江流域资源与环境, 2008, 17(4): 551 .
[6] 张志才, 陈 喜, 石 朋, 董贵明, 束龙仓, 马建良. 贵州喀斯特峰丛山体土壤水分布特征及其影响因素[J]. 长江流域资源与环境, 2008, 17(5): 803 .
[7] 胡贤辉,张 霞,杨钢桥. 湖北省土地利用结构变化及其驱动机制分析[J]. 长江流域资源与环境, 2008, 17(1): 43 .
[8] 张 征,李 今,梁 威,吴振斌. 拟除虫菊酯杀虫剂对水生态系统的毒性作用[J]. 长江流域资源与环境, 2006, 15(1): 125 -130 .
[9] 赵沁娜 徐启新. 城市土地置换过程中土壤多环芳烃污染的健康风险评价[J]. 长江流域资源与环境, 2009, 18(3): 286 -290 .
[10] 陈书卿, 刁承泰. 三峡库区生态经济区用地结构演变及驱动机制——以梁平县为例[J]. 长江流域资源与环境, 2009, 18(12): 1125 .