长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1491-1498.doi: 10.11870/cjlyzyyhj201509008

• 自然资源 • 上一篇    下一篇

基于Hydrus-1D模型的太湖流域农田系统水分渗漏和氮磷淋失特征分析

赖晓明1,2, 廖凯华1, 朱青1, 吕立刚1,3, 徐飞1,2   

  1. 1. 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049;
    3. 南京大学地理与海洋科学学院, 江苏 南京 210046
  • 收稿日期:2014-12-17 修回日期:2015-03-24 出版日期:2015-09-20
  • 作者简介:赖晓明(1990~),男,硕士,主要从事土壤水盐迁移研究.E-mail:1270754381@qq.com
  • 基金资助:
    江苏省自然科学基金(BK2012502);中国科学院南京地理与湖泊研究所"一三五"重点项目(NIGLAS2012135005)

Feature analysis of soil water leakage and leaching of nitrogen and phosphorus in the typical farmland of taihu lake basin based on hydrus-1d model

LAI Xiao-ming1,2, LIAO Kai-hua1, ZHU Qing1, LV Li-gang1,3, XU Fei1,2   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of Chinese academy of sciences, Beijing 100049, China;
    3. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China
  • Received:2014-12-17 Revised:2015-03-24 Online:2015-09-20
  • Contact: 朱青,E-mail:qzhu@niglas.ac.cn E-mail:qzhu@niglas.ac.cn

摘要: 在土壤水分长期定位观测基础上,应用Hydrus-1D模型对太湖流域典型稻麦轮作农田土壤水分渗漏进行动态模拟,并结合深层土壤溶液取样及氮磷浓度测定,分析了当前耕作方式下农田水分渗漏和氮磷淋失特征。结果表明,土壤水渗漏与降雨、灌溉及前期土壤含水率有关;麦季深层渗漏量小但持续时间长,而稻季单次渗漏量大却持续时间短。模拟时段内铵态氮和可溶解性总磷的淋失主要发生在稻季,淋失量分别为2.62、0.49 kg/hm2,分别占稻麦轮作期总淋失量的96.0%、96.0%,而硝态氮淋失主要发生在麦季,淋失量为57.97 kg/hm2,占总淋失量的80.2%;无机氮淋失的主要形态为硝态氮,其淋失量占总淋失量的96.4%。综合看来,硝态氮应作为主要阻控对象,以减少农田面源污染对地下水及太湖水体的污染风险。此外,氮磷淋失在6、7月份即休耕期和水稻生长早期容易达到峰值,应得到重视。

关键词: 土壤水分, 稻麦轮作, 富营养化, 氮磷淋失

Abstract: Taihu Lake Basin is one of the most serious polluted areas in China, while the eutrophication is the main environmental problem, which is mainly caused by the agricultural non-point source pollution as commonly considered. Therefore, an in-depth study of the agricultural leaching of nitrogen and phosphorus under rice-wheat rotation in Taihu Lake Basin is necessary. In order to get the data of leaching nitrogen and phosphorus, the concentration of the nitrogen and phosphorus in soil water sample should be tested and the leakage of soil water should be acquired. Traditional methods on that have many limitations in practical applications and generally the time-continuous leaching of nitrogen and phosphorus can't be obtained. While in this study, based on long-term measurement of soil water content, the farmland soil water leakage under rice-wheat rotation was simulated using the Hydrus-1D model. Combining simulation results and measurements of soil water nitrogen and phosphorus concentrations at the depth of 60 cm, the leaching of nitrogen and phosphorus were obtained. Comparing to the traditional methods, this method can calculate the data of the leaching of nitrogen and phosphorus by less measurement data. Results showed that the Hyrus-1D model can well simulate the leakage of soil water in the farmlands of Taihu Lake Basin. The soil water leakage was influenced by precipitation, irrigation and antecedent soil water content. The leakage amount was little and the time of duration was long during wheat growing season; while during rice growing season, the leakage amount was large and the time of duration was short. The leaching of ammonium nitrogen and dissolved phosphorus mainly occur during the rice growing season. The leaching of ammonium nitrogen during this period (2.62 kg/hm2) accounted for 96.0% of the total leaching during the whole study period. The leaching of dissolved phosphorus (0.49 kg/hm2) accounted for 96.0% of the total leaching. However, the leaching of nitrate nitrogen mainly occurred during the wheat growing season. The leaching during this season (57.97 kg/hm2) accounted for 89.5% of the total leaching during the whole study period. The main form of inorganic nitrogen leaching from soil was nitrate nitrogen, which accounted for 96.4% of the total inorganic nitrogen leaching. In conclusion, the nitrate nitrogen should be the key control targets in preventing agricultural non-point source pollution, to reduce the risk of agricultural non-point source pollution contaminating the quality of the groundwater and Taihu Lake water body. Besides, the peak leaching time of nitrogen and phosphorus is during fallow period and at the early stage of the growth of paddy (June and July), due to the unstable soil and undeveloped roots in field and frequent rainfall during these periods.

Key words: soil water content, eutrophication, rice-wheat rotation, nitrogen and phosphorus leaching

中图分类号: 

  • X171
[1] 夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境,2003,12(1):45-49.
[2] 俞映倞,薛利红,杨林章.不同氮肥管理模式对太湖流域稻田土壤氮素渗漏的影响[J].土壤学报,2011,48(5):988-995.
[3] 黄明蔚,刘 敏,陆 毅,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636.
[4] 张玉珍.农田不同土地利用氮素渗漏量的研究[J].福州大学学报(自然科学版),2006,34(4):620-624.
[5] 廖凯华,徐绍辉,程桂福,等.产芝水库灌区农田水分转化及节水灌溉模式分析[J].农业工程学报,2010,26(5):45-51.
[6] 马 欢,杨大文,雷慧闽,等.Hydrus-1D模型在田间水循环规律分析中的应用及改进[J].农业工程学报,2011,27(3):6-12.
[7] LETERME B, MALLANTS D, JACQUES D. Estimation of future groundwater recharge using climatic analogues and Hydrus-1D [J]. Hydrology and Earth System Sciences Discussions, 2012, 9(1): 1389-1410.
[8] 高海鹰,黄丽江,张 奇,等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证[J].农业环境科学学报,2008,27(4):1346-1352.
[9] 李 虎,王立刚,邱建军.基于DNDC模型的华北典型农田氮素损失分析及综合调控途径[J].中国生态农业学报,2012,20(4):414-421.
[10] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
[11] VAN GENUCHTEN M TH. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[12] FEDDES R A, KOWALIK P J, ZARADNY H. Simulation of field water use and crop yield [M]. New York, NY: John Wiley and Sons, 1978.
[13] VAN GENUCHTEN M TH. A numerical model for water and solute movement in and below the root zone[R]. Res Rep 121, USDA-ARS, U S Salinity Lab, Riverside, CA, 1987.
[14] HOFFMAN G J, VAN GENUCHTEN M TH. Soil properties and efficient water use: Water management for salinity control[C]//TAYLOR H M, JORDAN W R, SINCLAIR T R, eds. Limitations and Efficient Water Use in Crop Production, Am. Soc. of Agron., Madison, WI, 1983: 73-85.
[15] 黄昌勇,徐建明.土壤学[M].第三版.北京:中国农业出版社,2010.
[16] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I-A discussion of principles [J]. Journal of Hydrology, 1970, 10(3): 282-290.
[17] 李 谦,郑锦森,朱 青,等.太湖流域典型土地利用类型土壤水分对降雨的响应[J].水土保持学报,2014,28(1):6-11.
[18] 肖 靖,李 莉.农田土壤氮素流失研究[J].绿色科技,2014(2):40-42.
[19] 朱兆良,张福锁.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].北京:科学出版社,2010.
[20] 王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报,2001,9(1):16-18.
[21] 李 勇,杨林章,殷广德.太湖地区直播稻田氮素渗漏损失试验研究[J].植物营养与肥料学报,2010,16(1):99-104.
[22] VAN DER MOLEN D T, BREEUWSMA A, BOERS P C M. Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspectives [J]. Journal of Environmental Quality, 1998, 27: 4-11.
[1] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[2] 杨德军, 雷少刚, 卞正富, 牟守国. 土壤物理质量指标研究进展及在矿区环境中的应用展望[J]. 长江流域资源与环境, 2015, 24(11): 1961-1968.
[3] 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506.
[4] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[5] 盛海燕, 姚佳玫, 何剑波, 刘明亮, 韩轶才, 虞左明. 浙江青山水库浮游植物群落结构变化及与环境因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 978-986.
[6] 朱广伟. 太湖水质的时空分异特征及其与水华的关系[J]. 长江流域资源与环境, 2009, 18(5): 439-.
[7] 刘小龙 刘丛强 李思亮 汪福顺 王宝利 灌 瑾 杨 妍. 猫跳河流域梯级水库夏季N2O的产生与释放机理[J]. 长江流域资源与环境, 2009, 18(4): 373-.
[8] 张信宝,曹植菁, 艾南山. 溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究[J]. 长江流域资源与环境, 2009, 18(2): 170-.
[9] 张志才, 陈 喜, 石 朋, 董贵明, 束龙仓, 马建良. 贵州喀斯特峰丛山体土壤水分布特征及其影响因素[J]. 长江流域资源与环境, 2008, 17(5): 803-803.
[10] 杨 英. 南水北调中线水源地不同植被类型坡地土壤水分特征研究[J]. 长江流域资源与环境, 2008, 17(2): 212-212.
[11] 王 芳. 太湖主体湖区对梅梁湾藻类影响定量化研究[J]. 长江流域资源与环境, 2008, 17(2): 275-275.
[12] 王毛兰,| 胡春华,周文斌,. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1): 138-138.
[13] 万金保, 李媛媛. 湖泊水质模型研究进展[J]. 长江流域资源与环境, 2007, 16(6): 805-805.
[14] 高镜清, 熊治廷, 张维昊, 邓绪伟, 尚林源, 付长营. 常见沉水植物对东湖重度富营养化水体磷的去除效果[J]. 长江流域资源与环境, 2007, 16(6): 796-796.
[15] 阚平,李崇明|吕平毓,张晟,张勇. 重庆市“禁磷”绩效评估[J]. 长江流域资源与环境, 2007, 16(1): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许晗之,汪院生,常本春,王腊春. 江苏太湖地区调水改善水环境研究[J]. 长江流域资源与环境, 2006, 15(Sup1): 92 -96 .
[2] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[3] 徐丽华,岳文泽,徐建华. 城市热场剖面的分形维数计算及其意义研究——以上海中心城区为例[J]. 长江流域资源与环境, 2007, 16(3): 384 .
[4] 冯 平,徐向广,李 海. 基于模糊集合分析的汛期分期方法及其应用[J]. 长江流域资源与环境, 2008, 17(3): 495 .
[5] 马荣华,杨桂山. 长江岸线与岛屿演化的空间分形研究——以江苏段为例[J]. 长江流域资源与环境, 2004, 13(6): 541 -545 .
[6] 胡冰川,吴 强,周曙东. 粮食生产的投入产出影响因素分析——基于江苏省粮食生产的实证研究[J]. 长江流域资源与环境, 2006, 15(1): 71 -75 .
[7] 贾 丽, 沈玉芳. 我国生态工业园发展的SWOT分析[J]. 长江流域资源与环境, 2007, 16(6): 711 .
[8] 谢月玉, 王式功, 董安祥, 尚可政. 澳洲冷空气活动与长江中下游降水的联系分析[J]. 长江流域资源与环境, 2009, 18(7): 625 .
[9] 虞孝感, 王磊. 极化区功能识别与评价指标研究[J]. 长江流域资源与环境, 2011, 20(07): 775 .
[10] 孙 君| 郇红艳. 基于F-AHP的产业转移后可持续发展评价模型构建与实证研究[J]. 长江流域资源与环境, 2011, 20(10): 1157 .