长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1920-1928.doi: 10.11870/cjlyzyyhj201511016

• 生态环境 • 上一篇    下一篇

近60年赣江水沙变化特征及影响因素分析

刘星根1, 李昌彦2,4, 吴敦银1,3   

  1. 1. 江西师范大学地理与环境学院, 江西 南昌 330022;
    2. 南昌工程学院工商管理学院, 江西 南昌 330099;
    3. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022;
    4. 江西省水安全与可持续发展软科学研究基地, 江西 南昌 330022
  • 收稿日期:2015-02-04 修回日期:2015-05-19 出版日期:2015-11-20
  • 通讯作者: 吴敦银,E-mail:450202434@qq.com E-mail:450202434@qq.com
  • 作者简介:刘星根(1990~),男,硕士研究生,主要研究方向为水文水资源.E-mail:1240574819@qq.com
  • 基金资助:
    国家自然科学基金项目(51369011,41201033);国家社科基金青年项目(15CGL040)

CHANGING CHARACTERISTIC AND ITS IMPACT FACTOR ANALYSIS OF STREAMFLOW AND SEDIMENT OF GANJIANG RIVER BASIN DURING PAST 60 YEARS

LIU Xing-gen1, LI Chang-yan2,4, WU Dun-yin1,3   

  1. 1. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China;
    2. Business Administration College, Nanchang Institute of Technology, Nanchang 330099, China;
    3. Key Laboratory of Lake Poyang Ecological Environment and Resource Research of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
    4.Jiangxi Reseach Center of Soft Science for Water Security and Sustainable Development, Nanchang 330022, China
  • Received:2015-02-04 Revised:2015-05-19 Online:2015-11-20

摘要: 赣江是鄱阳湖流域最大水系,赣江水沙变化对鄱阳湖入湖径流、泥沙等水文特征有重要影响。目前对赣江水沙研究主要集中在下游外洲站河段,不足以反映全流域水沙变化规律。选取赣江上游4站、吉安和外洲水文站分别代表上、中、下游河段,基于近60 a的实测流量、悬移质泥沙资料,采用水文学和数理统计相结合的方法,分析赣江水沙年际变化特征以及可能影响因素,以期为流域水沙资源管理提供参考。结果表明:(1)赣江径流年际变化大,1970s、1990s水量较丰,其它年代径流偏少,年径流序列无显著变化趋势和突变点;(2)输沙量年际变化剧烈,呈显著降低趋势,上游4站、吉安站、外洲站输沙序列突变点分别为2002年、1995年、1995年,突变后年输沙量较突变前减少52%、71%、67%;(3)赣江上游水土保持建设是上游4站输沙量减小的主要原因;1993年后万安水库拦沙是吉安、外洲站输沙量显著减少的主要原因,水土保持、河道采砂也是引起吉安、外洲站输沙量减少的直接因素。(4)水土保持减沙的作用是缓慢和滞后的,而万安水库对下游河道的减沙作用是迅速而显著的。可见,赣江入鄱阳湖的年径流无明显减少趋势,入湖输沙量显著减少,有利于减少鄱阳湖的泥沙淤积、促进湖泊生态的良性发展。

关键词: 赣江, 水沙变化特征, Mann-Kendall, T检验

Abstract: Ganjiang river is the largest river system of Poyang Lake Basin. The change of streamflow and sediment in Ganjiang river has an important influence on hydrological process of Poyang Lake. However, the current research on streamflow and sediment of Ganjiang river is mainly based on Waizhou hydrostation, the control station at downstream. That may leads to an incomplete understanding about hydrological characteristics of entire basin. This study systematically examined the changes of discharge and sediment load and their possible causes, which may provide reference for water and sediment resource management of river basin, according to the long-term measured data recent 60 years at six representative stations. Those stations are four stations (Hanlinqiao station, Bashang station, Julongtan station, Xiashan station) at upstream, Jian station at midstream and Waizhou station at downstream. The non-parametric Mann-Kendall test and moving t-test were applied to detect the change in annual streamflow and suspended-sediment. Results indicated that: (1) Great variability at annual and interannual scales on discharge was analyzed at upper four stations, Jian station and Waizhou, with variation coefficient as 0.31, 0.29, 0.28 respectively. 1970s and 1990s were regarded as abundant water time, as average runoff at major stations during those period were 103%-113% than average from 1953-2013, while the other were flat or low water years. No significant trends and abrupt points were detected on streamflow, and annual changes were more slightly obvious in upper stream than downstream.(2) In-phase relations between sediment load and streamflow were observed on shorter time scales before 1992, which may imply a considerable influence of the runoff on sediment transport. However, obvious different tendency were detected between streamflow and sediment during 1993-2013 owing to great reduction of sediment at all stations. Detailed examination shows annual sediment load change was more dramatic compared to runoff, with variation coefficient ranging from 0.46-0.62. An abrupt point of sediment at the upper four stations, Jian station and Waizhou station came out in 2002, 1995 and 1995, with relative change rate at 52%, 71%, 67% respectively. (3) The flow duration curves and monthly average sediment concentration were analyzed to explore possible causes of sediment reduction. There were no significant changes on flow duration curves, while monthly average sediment concentration after abrupt points has decreased to 30%-49%, which acts as a major cause for the decreasing annual sediment. Both decreases in annual sediment and in sediment concentration at the upper stream can be linked with recent human activities, mainly including soil erosion control and reforestation. Although the upstream sediment decrease has certain influence on the downstream, reservoir construction, especially Wanan reservoir which capacity was 2.2 billion cubic meters and operated from 1993, was a main cause of the decreasing trend of sediment at Jian and Waizhou station. The average annual deposition of suspended-sediment in Wanan reservoir was estimated to 400×104t. In addition, soil erosion control and large amounts of sand mining activities at downstream were contributed to the decreasing trend of sediment at Waizhou station. (4) The impact of soil and water conservation measures on reduce sediment was slow and hysteretic, while influences of sediment reduction of Wanan reservoir is prompt and significant. In concluded, a significant decreasing trend was observed on annual sediment load, while the runoff into the Poyang Lake from Ganjiang river maintained steady. Those contributes to reduce amount of sediment deposition and healthy development of Poyang Lake.

Key words: the Ganjiang River, water and sediment characteristics, Mann-Kendall, T test

中图分类号: 

  • P333
[1] 任惠茹,李国胜,崔林林,等.近60年来黄河入海水沙通量变化的阶段性与多尺度特征[J].地理学报,2014,69(5):619-631.
[2] 许全喜,童 辉.近50年来长江水沙变化规律研究[J].水文,2012,32(5):38-47,76.
[3] 范利杰,穆兴民,赵广举.近50 a嘉陵江流域径流变化特征及影响因素[J].水土保持通报,2013,33(1):12-17.
[4] 刘 锋,陈沈良,彭 俊,等.近60年黄河入海水沙多尺度变化及其对河口的影响[J].地理学报,2011,66(3):313-323.
[5] 高 鹏,穆兴民,王 飞,等.黄河中游河口镇-花园口区间水沙变化及其对人类活动的响应[J].泥沙研究,2013(5):75-80.
[6] ZHANG Q,SINGH VP,XU CY,et al.Abrupt behaviours of streamflow and sediment load variations of the Yangtzeriver basin,China[J].Hydrological Processes,2013,27(3):444-452.
[7] 张 强,陈桂亚,姜 彤,等.近40年来长江流域水沙变化趋势及可能影响因素探讨[J].长江流域资源与环境,2008,17(2):257-263.
[8] 许炯心.长江上游干支流近期水沙变化及其与水库修建的关系[J].山地学报,2009,27(4):385-393.
[9] 赵 玉,穆兴民,何 毅,等.1950-2011年黄河干流水沙关系变化研究[J].泥沙研究,2014(4):32-38.
[10] 张守红,刘苏峡,莫兴国,等.降雨和水保措施对无定河流域径流和产沙量影响[J].北京林业大学学报,2010,32(4):161-168.
[11] 孙 鹏,张 强,陈晓宏,等.鄱阳湖流域水沙时空演变特征及其机理[J].地理学报,2010,65(7):828-840.
[12] 张 颖,宋成成,肖 洋,等.近50年来赣江流域水沙年内分配变化分析[J].水文,2013,33(3):80-84.
[13] 肖 洋,张汶海,张 颖.赣江中下游近60年水沙时空分布特征[J].水文,2014,34(6):86-92.
[14] 叶许春,刘 健,李相虎,等.气候和人类活动对赣江径流变化的作用分析[J].河海大学学报(自然科学版),2013,41(3):196-203.
[15] 郑海金,方少文,杨 洁,等.近40年赣江年径流泥沙变化及影响因素分析[J].水土保持学报,2012,26(1):28-32.
[16] 肖 洋,宋成成,李开杰,等.赣江外洲站近50年水沙变化规律[J].水利水运工程学报,2011(4):126-130.
[17] 孙晓山.江西河湖大典[M].武汉:长江出版社,2010:8-14.
[18] 曹建廷,秦大河,罗 勇,等.长江源区1956-2000年径流量变化分析[J].水科学进展,2007,18(1):29-33.
[19] 魏凤英.现代气候统计诊断与预测技术[M].第2版.北京:气象出版社,2007:43-70.
[20] ZHENG M G,SUN LY,YAN M.Temporalchange of runoff and sediment load and their differential response to human activities:Acase study for a well-vegetated mountain watershed of southern China[J].Journal of Mountain Science,2014,11(1):73-85.
[21] 李明辉,周俐俐,詹寿根,等.万安水库泥沙淤积分析[J].江西水利科技,2011,37(3):191-194,201.
[22] 张玲丽,谭政江,李 昆.赣江中-下游河段采沙对河床的影响[J].水电与新能源,2010(5):63-65.
[1] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[2] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[3] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[4] 黄钰瀚, 张增信, 费明哲, 金秋. TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625.
[5] 毛天旭, 王根绪. 基于逐月退水系数的三江源枯季径流特征分析[J]. 长江流域资源与环境, 2016, 25(07): 1150-1157.
[6] 白淑英, 顾海敏, 史建桥, 魏楚京. 近50 a长江流域暴雨日数时空变化分析[J]. 长江流域资源与环境, 2015, 24(07): 1255-1262.
[7] 马宗伟, 许有鹏, 钟善锦. 水系分形特征对流域径流特性的影响——以赣江中上游流域为例[J]. 长江流域资源与环境, 2009, 18(2): 163-.
[8] 刘健,张奇. 一个新的分布式水文模型在鄱阳湖赣江流域的验证[J]. 长江流域资源与环境, 2009, 18(1): 19-.
[9] 陆玉麒,董 平. 流域核心-边缘结构模式探讨——以赣江流域为例[J]. 长江流域资源与环境, 2005, 14(1): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .