长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 945-954.doi: 10.11870/cjlyzyyhj201706017
• 生态环境 • 上一篇
郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆
LANG Deng-xiao, SHI Jia-qi, ZHENG Jiang-kun, LIAO Feng, MA Xing, WANG Wen-wu, CHEN Yi-fan
摘要: 潜在蒸散发对水资源评价和气候变化均具有重要意义。采用Penman-Monteith公式和气象观测资料计算了中国西南地区90个气象站的潜在蒸散发,并采用多种统计方法分析了潜在蒸散发的时空变化特征。结果表明:(1)西南地区近52a的平均潜在蒸散发为3 209.8 mm,其中云南省潜在蒸散发最高(3 664.7 mm),其次为四川省(3 015.0 mm)、重庆市(2 972.4 mm)、贵州省(2 958.0 mm)。四季潜在蒸散发空间分布特征与年不同,从大到小排序为夏季,春季,秋季,冬季。(2)西南地区整体呈增加趋势(0.9 mm/10 a),其中31个站点呈减少趋势(p<0.1),17个站点呈增加趋势(p<0.1),其余站点变化趋势不显著。大部分站点春季(55.6%)和夏季(63.3%)呈减少趋势,秋季(62.2%)和冬季(58.9%)则呈增加趋势。(3)经Mann-Kendall突变检验,该区整体潜在蒸散发的突变时间为1995年(p<0.05);单个站点突变检验显示,76个站点发生突变,突变年份集中于1980s,未发生突变的站点主要分布于青藏高原东缘。整体上看,近52a来西南地区潜在蒸散发略呈增加趋势,并存在突变点,但部分站点存在相反的变化趋势,这和复杂的地形环境和气候特征有较大关系,体现出西南地区水文气象变化的独特性。
中图分类号:
[1] FISHER J B, WHITTAKER R J, MALHI Y. ET come home:potential evapotranspiration in geographical ecology[J]. Global Ecology and Biogeography, 2011, 20(1):1-18. [2] 刘小莽, 郑红星, 刘昌明, 等. 海河流域潜在蒸散发的气候敏感性分析[J]. 资源科学, 2009, 31(9):1470-1476.[LIU X M, ZHENG H X, LIU C M, et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin[J]. Resources Science, 2009, 31(9):1470-1476.] [3] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration:Guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56[R]. Rome:Food and Agriculture Organization of the United Nations, 1998. [4] 张晓琳, 熊立华, 林 琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2):229-237.[ZHANG X L, XIONG L H, LIN L, et al. Application of five potential evapotranspiration equations in Hanjiang Basin[J]. Arid Land Geography, 2012, 35(2):229-237.] [5] 杜加强, 熊珊珊, 刘成程, 等. 黄河上游地区几种参考作物蒸散量计算方法的适用性比较[J]. 干旱区地理, 2013, 36(5):831-840.[DU J Q, XIONG S S, LIU C C, et al. Comparison of models for estimating reference crop evapotranspiration in the headwater catchment of the Yellow River basin, China[J]. Arid Land Geography, 2013, 36(5):831-840.] [6] 左德鹏, 徐宗学, 李景玉, 等. 气候变化情景下渭河流域潜在蒸散量时空变化特征[J]. 水科学进展, 2011, 22(4):455-461.[ZUO D P, XU Z X, LI J Y, et al. Spatiotemporal characteristics of potential evapotranspiration in the Weihe River basin under future climate change[J]. Advances in Water Science, 2011, 22(4):455-461.] [7] GUO S L, GUO J, ZHANG J, et al. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin[J]. Science in China Series E:Technological Sciences, 2009, 52(11):3234-3239. [8] RAHIMI KHOOB A. Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment[J]. Irrigation Science, 2008, 26(3):253-259. [9] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2):109-120. [10] 刘昌明, 张 丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5):579-588.[LIU C M, ZHANG D. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5):579-588.] [11] RODERICK M L, ROTSTAYN L D, FARQUHAR G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17):L17403. [12] CHATTOPADHYAY N, HULME M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change[J]. Agricultural and Forest Meteorology, 1997, 87(1):55-73. [13] ABTEW W, OBEYSEKERA J, IRICANIN N. Pan evaporation and potential evapotranspiration trends in South Florida[J]. Hydrological Processes, 2011, 25(6):958-969. [14] 韩松俊, 刘群昌, 杨书君. 黑河流域上中下游潜在蒸散发变化及其影响因素的差异[J]. 武汉大学学报(工学版), 2009, 42(6):734-737.[HAN S J, LIU Q C, YANG S J. Differences of changes in potential evapotranspiration and its factors over the upper, middle and lower reaches of Heihe River Basin[J]. Engineering Journal of Wuhan University, 2009, 42(6):734-737.] [15] 陈 超, 庞艳梅, 潘学标, 等. 四川地区参考作物蒸散量的变化特征及气候影响因素分析[J]. 中国农业气象, 2011, 32(1):35-40.[CHEN C, PANG Y M, PAN X B, et al. Analysis on change of reference crop evapotranspiration and climatic influence factors in Sichuan[J]. Chinese Journal of Agrometeorology, 2011, 32(1):35-40.] [16] 罗孳孳, 阳园燕, 杨世琦, 等. 重庆地区参考作物蒸散时空特征与气候影响因子[J]. 节水灌溉, 2012(10):5-9.[LUO Z Z, YANG Y Y, YANG S Q, et al. Spatial-temporal characteristics of reference crop evapotranspiration and climatic influence factors in Chongqing[J]. Water Saving Irrigation, 2012(10):5-9.] [17] 谢 平, 张杨珠, 龙怀玉, 等. 近31年来云南省潜在蒸散量的时空演变[J]. 西南农业学报, 2016, 29(4):940-947.[XIE P, ZHANG Y Z, LONG H Y, et al. Temporal-spatial variations of potential evapotranspiration in Yunnan Province during 1981-2011[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(4):940-947.] [18] 戴明宏, 李玉涛, 王腊春, 等. 典型喀斯特地区参考作物蒸散量的时空变化分析——以贵州省为例[J]. 地球与环境, 2016, 44(3):342-352.[DAI M H, LI Y T, WANG L C, et al. Temporal and spatial variation of reference crop evapotranspiration in Guizhou Province, China[J]. Earth and Environment, 2016, 44(3):342-352.] [19] ALLEN R G, PRUITT W O, WRIGHT J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management, 2006, 81(1/2):1-22. [20] ALLEN R G, CLEMMENS A J, BURT C M, et al. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1):24-36. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20481-2006 气象干旱等级[S]. 北京:中国标准出版社, 2006.[General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 20481-2006 Classification of meteorological droughtcategory[S]. Beijing:China Standard Press, 2006.] [22] 王 蒙, 殷淑燕. 近52a长江中下游地区极端降水的时空变化特征[J]. 长江流域资源与环境, 2015, 24(7):1221-1229.[WANG M, YIN S Y. Spatio-temporal variations of the extreme precipitation of middle and lower reaches of the Yangtze river in recent 52 years[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7):1221-1229.] [23] XU X Y, YANG D W, YANG H B, et al. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014, 510:530-540. [24] DAI A G. Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews:Climate Change, 2011, 2(1):45-65. [25] BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox[J]. Nature, 1998, 396(6706):30. [26] 高 歌, 陈德亮, 任国玉, 等. 1956~2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3):378-387.[GAO G, CHEN D L, REN G Y, et al. Trend of potential evapotranspiration over China during 1956 to 2000[J]. Geographical Research, 2006, 25(3):378-387.] [27] 申双和, 盛 琼. 45年来中国蒸发皿蒸发量的变化特征及其成因[J]. 气象学报, 2008, 66(3):452-460.[SHEN S H, SHENG Q. Changes in pan evaporation and its cause in China in the last 45 years[J]. Acta Meteorologica Sinica, 2008, 66(3):452-460.] [28] 刘 敏, 沈彦俊, 曾 燕, 等. 近50年中国蒸发皿蒸发量变化趋势及原因[J]. 地理学报, 2009, 64(3):259-269.[LIU M, SHEN Y J, ZENG Y, et al. Changing trend of pan evaporation and its cause over the past 50 years in China[J]. Acta Geographica Sinica, 2009, 64(3):259-269.] [29] 尹文有. 全球变暖背景下西南地区气候变化特征分析[D]. 兰州:兰州大学硕士学位论文, 2010.[YIN W Y. Analysis of climate change characteristics over Southwest China under the background of global warming[D]. Lanzhou:Master Dissertation of Lanzhou University, 2010.] [30] 周 丹, 张 勃, 李小亚, 等. 1961~2010年中国大陆地面气候要素变化特征分析[J]. 长江流域资源与环境, 2014, 23(4):549-558.[ZHOU D, ZHANG B, LI X Y, et al. Analysis of variations of climatic elements in surface ground of mainland China during 1961-2010[J]. Resources and Environment in the Yangtze Basin, 2014, 23(4):549-558.] [31] 王 钧, 蒙吉军. 西南喀斯特地区近45年来气候变化特征及趋势[J]. 北京大学学报(自然科学版), 2007, 43(2):223-229.[WANG J, MENG J J. Characteristics and tendencies of climate change in the Southwestern Karst Region of China in the recent 45 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2):223-229.] [32] YUE S, WANG C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6):4-1-4-7. [33] 黄 英, 王 宇. 云南省蒸发量时空分布及年际变化分析[J]. 水文, 2003, 23(1):36-40.[HUANG Y, WANG Y. Analysis on temporal and spatial distribution and inter-annual change of the evaporation capacity in Yunnan Province[J]. Hydrology, 2003, 23(1):36-40.] [34] 李 楠, 张 宏. 定量分析四川省1954~2014年参考作物蒸散量变化特征及气候影响因素[J]. 贵州师范大学学报(自然科学版), 2015, 33(4):32-36.[LI N, ZHANG H. Analyze the characteristics of reference crop evapotranspiration and climate factors in Sichuan during 1954~2014[J]. Journal of Guizhou Normal University (Natural Sciences), 2015, 33(4):32-36.] [35] 徐蒙蒙, 张志才, 陈 喜. 贵州省参考作物蒸散发量的时空变化分析[J]. 地球与环境, 2012, 40(2):243-249.[XU M M, ZHANG Z C, CHEN X. Spatio-temporal variation of reference evapotranspiration in Guizhou Province from 1960 to 2009[J]. Earth and Environment, 2012, 40(2):243-249.] [36] 徐 羽, 徐 刚, 吴艳飞, 等. 重庆市参考作物蒸散量及湿润指数变化研究[J]. 水土保持研究, 2015, 22(3):176-181, 187.[XU Y, XU G, WU Y F, et al. Reference crop evapotranspiration and surface humidity index in Chongqing city[J]. Research of Soil and Water Conservation, 2015, 22(3):176-181, 187.] [37] THOMAS A. Seasonal and spatial variation of evapotranspiration in the mountains of southwest China[J]. Journal of Mountain Science, 2002, 20(4):385-393. [38] 董晴晴, 占车生, 王会肖, 等. 2000年以来的渭河流域实际蒸散发时空格局分析[J]. 干旱区地理, 2016, 39(2):327-335.[DONG Q Q, ZHAN C S, WANG H X, et al. Spatio-temporal patterns of actual evapotranspiration in the Weihe River Basin since 2000[J]. Arid Land Geography, 2016, 39(2):327-335.] [39] 唐 婷, 冉圣宏, 谈明洪. 京津唐地区城市扩张对地表蒸散发的影响[J]. 地球信息科学学报, 2013, 15(2):233-240.[TANG T, RAN S H, TAN M H. Urbanization and its impact on the evapotranspiration in Beijing-Tianjin-Tangshan Area[J]. Journal of Geo-Information Science, 2013, 15(2):233-240.] [40] 王炳亮, 李国胜. 1961~2010年辽河三角洲参考蒸散发变化特征及主导因子分析[J]. 地理科学, 2014, 34(10):1233-1238.[WANG B L, LI G S. Quantification of the reasons for reference evapotranspiration changes over the Liaohe Delta, Northeast China[J]. Scientia Geographica Sinica, 2014, 34(10):1233-1238.] [41] GRIFFITHS G M, CHAMBERS L E, HAYLOCK M R, et al. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region[J]. International Journal of Climatology, 2005, 25(10):1301-1330. [42] 温姗姗, 姜 彤, 李修仓, 等. 1961-2010年松花江流域实际蒸散发时空变化及影响要素分析[J]. 气候变化研究进展, 2014, 10(2):79-86.[WEN S S, JIANG T, LI X C, et al. Changes of actual evapotranspiration over the Songhua River Basin from 1961 to 2010[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(2):79-86.] [43] 谢今范, 韦小丽, 张晨琛, 等. 第二松花江流域实际蒸散发的时空变化特征和影响因素[J]. 生态学杂志, 2013, 32(12):3336-3343.[XIE J F, WEI X L, ZHANG C C, et al. Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River basin, Northeast China[J]. Chinese Journal of Ecology, 2013, 32(12):3336-3343.] [44] 蒋 冲, 王 飞, 穆兴民, 等. 秦岭南北潜在蒸散量时空变化及突变特征分析[J]. 长江流域资源与环境, 2013, 22(5):573-581.[JIANG C, WANG F, MU X M, et al. Spatial-temporal variations and mutations of potential evapotranspiration in the Northern and Southern regions of the Qinling mountains[J]. Resources and Environment in the Yangtze Basin, 2013, 22(5):573-581.] [45] 吴增祥. 气象台站历史沿革信息及其对观测资料序列均一性影响的初步分析[J]. 应用气象学报, 2005, 16(4):461-467.[WU Z X. Preliminary analyses of the information on meteorological station historical evolution and its impacts on homogeneity of observational records[J]. Journal of Applied Meteorological Science, 2005, 16(4):461-467.] |
[1] | 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460. |
[2] | 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296. |
[3] | 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149. |
[4] | 毛天旭, 王根绪. 基于逐月退水系数的三江源枯季径流特征分析[J]. 长江流域资源与环境, 2016, 25(07): 1150-1157. |
[5] | 袁文德, 郑江坤. 1962~2012年西南地区极端温度事件时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1246-1254. |
[6] | 张勃, 王东, 王桂钢, 马琼, 张国斌, 季定民. 西南地区近14 a植被覆盖变化及其与气候因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 956-964. |
[7] | 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-. |
[8] | 吴楠, 高吉喜, 苏德毕力格, 罗遵兰, 李岱青. 长江上游植被净初级生产力年际变化规律及其对气候的响应[J]. 长江流域资源与环境, 2010, 19(04): 389-. |
[9] | 王怀清, 赵冠男, 彭静, 胡菊芳. 近50年鄱阳湖五大流域降水变化特征研究[J]. 长江流域资源与环境, 2009, 18(7): 615-. |
[10] | 叶殿秀 张 强 邹旭恺 陈鲜艳. 近几十年三峡库区主要气象灾害变化趋势[J]. 长江流域资源与环境, 2009, 18(3): 296-300. |
[11] | 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-. |
[12] | 夏既胜,杨树华,张林艳,王玉朝,赵筱青,谭志卫. 金沙江流域(云南部分)生态潜力及其变化[J]. 长江流域资源与环境, 2008, 17(5): 798-798. |
[13] | 吴宜进. 近50年长江流域降水日数的演变趋势[J]. 长江流域资源与环境, 2008, 17(2): 217-217. |
[14] | 杨 军,刘俊卿,强德厚. 探索性数据分析在西藏气候变化趋势研究中的应用[J]. 长江流域资源与环境, 2007, 16(4): 543-543. |
[15] | 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346-351. |
|