长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 679-684.doi: 10.11870/cjlyzyyhj201604019

• 自然灾害 • 上一篇    下一篇

山地城市小型季节性河流雨洪淹没的数值模拟

卿晓霞, 王兆兴, 周健, 黄巍   

  1. 重庆大学城市建设与环境工程学院三峡库区生态环境教育部重点实验室, 重庆 400045
  • 收稿日期:2015-08-01 修回日期:2015-10-09 出版日期:2016-04-20
  • 作者简介:卿晓霞(1963~),女,教授,博导,主要从事水处理自动控制技术研究.E-mail:qxx118@126.com
  • 基金资助:
    国家“水体污染控制与治理”科技重大专项(2012ZX07-307-002)

NUMERICAL SIMULATION OF SMALL MOUNTAINOUS URBAN SEASONAL RIVER SUBMERGED BY STORM-FLOOD

QING Xiao-xia, WANG Zhao-xing, ZHOU Jian, HUANG Wei   

  1. Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction & Environmental Engineering, Chongqing University, Chongqing 400045, China
  • Received:2015-08-01 Revised:2015-10-09 Online:2016-04-20
  • Supported by:
    Natural Water Pollution Control and Treatment Science and Technology Major Project(2012ZX07-307-002)

摘要: 为预测伏牛溪中下游河段沿岸工程设施在流域暴雨期的潜在淹没危险性,利用MIKE11模型模拟了不同重现期暴雨和长江洪水发生时,伏牛溪中下游河段淹没深度及淹没范围。结果表明:50年及100年一遇暴雨发生时,伏牛溪中游河段的平均淹没深度分别为4.9 m和5.7 m,淹没面积分别为40 542 m2和41 980 m2,鳌山综合市场处居民生活用地会被淹没;50年及100年一遇长江洪水倒灌发生时,下游河段平均淹没深度分别为7.5 m和8.9 m,淹没面积分别为9 890 m2和10 931 m2;50年及100年一遇暴雨和长江洪水同时发生时,下游河段平均淹没深度分别达到9.4 m和10.1 m,淹没面积分别为14 559 m2和16 987 m2,下游污水处理装置会被淹没,部分居民建筑物地基受到威胁。模拟结果为伏牛溪流域的防洪规划和工程设施建设提供了参考。

关键词: 数值模拟, 雨洪淹没影响, 山地城市河流

Abstract: The downstream of the Funiu River was flooded frequently by rainfall and the backwater of the Yangtze River flood. In order to assess the effect of the midstream and downstream controlling flood in the Funiu River, and analyze potential submerged risk of coastal engineering structures in rainstorm period, the study simulated water depth and submerged area of midstream and downstream in different rainstorm return period by using MIKE11. The results showed that average water depth was 4.9 meters in midstream under the rainfall of 50-year return period. And the submerged area was 40 542 square meters. While under the rainfall of 100-year return period, the average water depth became 5.7 meter and the submerged area became 41 980 square meters. Meanwhile, the rainstorm would inundate the residential land at Aoshan integrated market. Besides, farmland would be submerged which located in steady slope by river bank. Under the backwater of the Yangtze River flood, water depth was 7.5 meter and flooded area was 9 890 square meters in downstream on once fifty years backwater. The two values were 8.9 meter and 10931 square meters at the 100-year return level of backwater. Moreover, residential buildings and wastewater treatment plant would not be affected. However, considered the Yangtze River flood season happened to wet period of the Funiu River, it's necessary to combine the influence of rainstorm and the Yangtze River backwater. The specific numbers were 9.4 meter for average water depth and 14 559 square meters for submerged area at the 50-year return period. And there were 10.1 meter and 16 987 square meters at the 100-year return period. What's more, under the both influence of rainstorm and the Yangtze River backwater, the wastewater treatment plant and some residential buildings would be drowned in downstream. These provided references of flood control planning and coastal engineering construction in the Funiu River. For midstream, flood control levees should be constructed, especially in flat river bank. When making flood prevention plan, it would be better to improve flood control standard for the safety of construction projects. On the other hand, the basement and side slope should be strengthened in downstream residential buildings, road as well. In addition, the wastewater treatment plant should be protected by bulwark or relocated.

Key words: numerical simulation, storm-flood impact, mountainous urban river

中图分类号: 

  • TV143
[1] 王沛芳, 王超, 李智勇. 山区城市河流生态环境需水量计算模式及其应用[J]. 河海大学学报(自然科学版), 2004, 32(5): 500-503. [WANG P F, WANG C, LI Z Y. Calculation mode for ecological water demand of mountain-city-rivers and its application[J]. Journal of Hohai University (Natural Sciences), 2004, 32(5): 500-503.]
[2] 姜文超, 饶碧华, 张智, 等. 山地城市河流健康内涵及评价[J]. 土木建筑与环境工程, 2009, 31(3): 104-108. [JIANG W C, RAO B H, ZHANG Z, et al. Mountainous urban river health: the concept and its assessment[J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(3): 104-108.]
[3] 潘兴瑶, 李其军, 陈建刚, 等. 城市地区流域洪水过程模拟: 以清河为例[J]. 水力发电学报, 2015, 34(6): 71-80. [PAN X Y, LI Q J, CHEN J G, et al. Urban area watershed flood simulation with hydraulic model: a case study of Qinghe river in Beijing[J]. Journal of Hydroelectric Engineering, 2015, 34(6): 71-80.]
[4] 郭凤清, 屈寒飞, 曾辉, 等. 基于MIKE21的潖江蓄滞洪区洪水危险性快速预测[J]. 自然灾害学报, 2013, 22(3): 144-152. [GUO F Q, QU H F, ZENG H, et al. Flood hazard forecast of Pajiang River flood storage and detention basin based on MIKE21[J]. Journal of Natural Disasters, 2013, 22(3): 144-152.]
[5] 齐珺, 杨志峰, 熊明, 等. 长江水系武汉段水动力过程三维数值模拟[J]. 水动力学研究与进展, 2008, 23(2): 212-219. [QI J, YANG Z F, XIONG M, et al. Three-dimensional modeling of hydrodynamic processes in the Wuhan catchments of the Chang Jiang River[J]. Chinese Journal of Hydrodynamics, 2008, 23(2): 212-219.]
[6] 刘佳娇, 齐少群, 张羽威, 等. 松花江哈尔滨段主干流河网水动力模型构建及在城市防洪预警决策中的应用[J]. 自然灾害学报, 2015, 24(2): 172-177. [LIU J J, QI S Q, ZHANG Y W, et al. Establishment of hydrodynamic model for main stream river network in Harbin segment of Songhua River and its application in urban flood early warning and prevention decision making[J]. Journal of Natural Disasters, 2015, 24(2): 172-177.]
[7] 郑子彦, 张万昌, 徐精文. 山区流域暴雨洪水的数值模拟[J]. 山地学报, 2012, 30(2): 222-229. [ZHENG Z Y, ZHANG W C, XU J W. Numeric simulation of torrential rainfall and flash-flood in a mountainous basin[J]. Journal of Mountain Science, 2012, 30(2): 222-229.]
[8] 邓命华, 易放辉, 栾震宇, 等. 三峡工程运行后洞庭湖松滋口建闸防洪影响分析[J]. 水力发电学报, 2013, 32(1): 156-162, 186. [DENG M H, YI F H, LUAN Z Y, et al. Analysis of impacts on Dongting Lake by flood control of Songzi sluice under operation of Three Gorges project[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 156-162, 186.]
[9] 魏文礼, 王德意. 计算水力学理论及应用[M]. 西安: 陕西科学技术出版社, 2001.
[10] 中国气象数据网. 中国地面气象站逐小时观测资料[EB/OL]. http://data.cma.gov.cn/data/detail/dataCode/A.0012.0001.html,2013.
[1] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540-2547.
[2] 龚继文, 李崇明, 程艳茹, 张韵, 赵丽. 基于GMS的山区三维地质模型及应用研究[J]. 长江流域资源与环境, 2016, 25(07): 1135-1141.
[3] 郑宗生, 周云轩, 刘志国, 田 波. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008, 17(5): 756-756.
[4] 武周虎,张娜. 河滩人工湿地对河流洪水位影响的数值模拟[J]. 长江流域资源与环境, 2007, 16(1): 7-10.
[5] 卢士强,林卫青,徐祖信,廖振良. 苏州河环境整治二期工程水质影响数值模拟[J]. 长江流域资源与环境, 2006, 15(2): 228-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[4] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[5] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[6] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[7] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[8] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[9] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .
[10] 许健民, 吕开宇, 娄博杰. 农业生产对土壤盐渍化影响的经济分析[J]. 长江流域资源与环境, 2009, 18(2): 132 .