长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 671-678.doi: 10.11870/cjlyzyyhj201604018

• 自然灾害 • 上一篇    下一篇

汉江源土壤流失状况及生态效益测评

李小燕, 王志杰   

  1. 陕西理工学院历史文化与旅游学院, 秦岭与蜀道地理研究所, 陕西 汉中 723000
  • 收稿日期:2015-03-04 修回日期:2015-05-19 出版日期:2016-04-20
  • 作者简介:李小燕(1978~),女,副教授,主要从事国土资源评价与GIS研究.E-mail:lxy1671@126.com
  • 基金资助:
    陕西理工学院项目(SLGKYQD2-33),陕西省社科基金项目(2014D43、2014D15)

EVALUATION OF SOIL LOSS AND ECOLOGICAL BENEFIT IN THE HAN RIVER SOURCE

LI Xiao-yan, WANG Zhi-jie   

  1. Qinling and Intones Geography Research Institute, School of History and Tourism, Shaanxi University of Technology, Hanzhong 723000, China
  • Received:2015-03-04 Revised:2015-05-19 Online:2016-04-20

摘要: 在通用土壤流失方程的基础上,提出了土壤侵蚀系数和土壤保持系数的概念和计算方法,用其对南水北调中线工程水源区土壤侵蚀状况及生态效益进行了测评,结果表明:(1)自然条件影响下,研究区潜在土壤侵蚀量大且空间分布差异显著,中高山区远大于河谷盆地区。(2)研究区实际土壤侵蚀量较小,但土壤侵蚀系数较大且空间分布规律性强。人类水土保持措施与土地利用方式对土壤侵蚀贡献率高,低山丘陵区土壤侵蚀系数最大,局部可达0.6,中高山及盆地区相对较小。(3)中高山区水土保持效益略有增加;河谷盆地及低山丘陵区明显减小。(4)低山丘陵区应成为今后水土保护工作的重点监控和治理区,也是应重点考虑的生态补偿区。

关键词: 汉江源, 土壤流失, 生态效益

Abstract: The soil erosion and ecological benefits in the water source region of middle route of South-to-North water transfer project were evaluated by using soil erosion coefficient and soil conservation coefficient based on USLE. The results show as follows. (1) The potential amount of soil erosion in the study area was large, and showed significant difference in spatial distribution. It was larger in the middle and high mountain region than that in the valley basin region. (2) The actual amount of soil erosion was lesser. However, the soil erosion coefficient was large with the obvious spatial distribution regularity. It was the largest in low mountain area and hilly region, and was relatively smaller in the middle and high mountain region and the valley basin region. Soil and water conservation measures and land use patterns have the high contribution to soil erosion. (3) The benefit of soil and water conservation was increased in the middle and high mountain regions, but was obviously decreased in the valley basin region, low mountain area and hilly regions. (4) The low mountain area and hilly regions should be the key monitoring and control area in the future soil and water conservation, and it should be the key ecological compensation area also.

Key words: Han River source, Soil erosion, Ecological benefits

中图分类号: 

  • S157
[1] 赵佐平, 闫莎, 同延安, 等. 汉江流域上游生态环境现状及治理措施[J]. 水土保持通报, 2012, 32(5): 32-36, 60. [ZHAO Z P, YAN S, TONG Y A, et al. Eco-environmental status assessment and countermeasures in the upper Hanjiang river basin[J]. Bulletin of soil and water conservation, 2012, 32(5): 32-36, 60.]
[2] 马乃喜, 周文涛, 孙纲. 陕西汉江流域的生态环境问题及其对丹江口水库的影响[J]. 陕西环境, 2003, 10(6): 1-3.
[3] 高全成. 汉江流域生态治理存在的问题及对策[J]. 陕西农业科学, 2012, 58(3): 192-195.
[4] 贺素娣. 汉江流域水土流失特点及防治对策[J]. 长江流域资源与环境, 1997, 6(3): 271-276. [HE S D. Characteristics of soil erosion in Hanjiang valley and possible countermeasures[J]. Resources and Environment in Yangtae Valley, 1997, 6(3): 271-276.]
[5] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望[J]. 自然杂志, 2008, 30(1): 12-16. [ZHENG F L, WANG Z L, YANG Q K. The retrospection and prospect on soil erosion research in China[J]. Chinese Journal of Nature, 2008, 30(1): 12-16.]
[6] 蔡强国, 刘纪根. 关于我国土壤侵蚀模型研究进展[J]. 地理科学进展, 2003, 22(3): 242-250. [CAI Q G, LIU J G. Evolution of soil erosion models in China[J]. Progress in Geography, 2003, 22(3): 242-250.]
[7] 李占斌, 朱冰冰, 李鹏. 土壤侵蚀与水土保持研究进展[J]. 土壤学报, 2008, 45(5): 802-809. [LI Z B, ZHU B B, LI P. Advancement in study on soil erosion and soil and water conservation[J]. Acta Pedologica Sinica, 2008, 45(5): 802-809.]
[8] 王娇, 程维明, 祁生林, 等. 基于USLE和GIS的水土流失敏感性空间分析——以河北太行山区为例[J]. 地理研究, 2014, 33(4): 614-624. [WANG J, CHENG W M, QI S L, et al. Sensitive evaluation and spatial analysis of soil and water loss based on USLE and GIS: taking Taihang mountain area of Hebei Province as an example[J]. Geographical Research, 2014, 33(4): 614-624.]
[9] WISCHMEIER W H, SMITH D D. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning[M]. USDA Agricultural Handbook, Washington DC: USDA, 1978: 537.
[10] 江忠善, 刘志, 贾志伟. 地形因素与坡地水土流失关系的研究[J]. 水土保持研究, 1990(2): 1-8. [JIANG Z S, LIU Z, JIA Z W. Research for relationships between topographic factors and loss of soil and water on sloping land, China[J]. Research of Soil and Water Conservation, 1990(2): 1-8.]
[11] 游松财, 李文卿. GIS支持下的土壤侵蚀量估算——以江西省泰和县灌溪乡为例[J]. 自然资源学报, 1998, 14(1): 62-68. [YOU S C, LI W Q. Estimation of soil erosion supported by GIS-a case study in Guanji township, Taihe, Jiangxi[J]. Journal of Natural Resources, 1998, 14(1): 62-68.]
[12] 卜兆宏, 李全英. 土壤可蚀性(K)值图编制方法的初步研究[J]. 农村生态环境, 1995, 11(1): 5-9. [BU Z H, LI Q Y. Preliminary study on the method of soil erodibility value mapping[J]. Rural Eco-Environment, 1995, 11(1): 5-9.]
[13] 符素华, 张卫国, 刘宝元, 等. 北京山区小流域土壤侵蚀模型[J]. 水土保持研究, 2001, 8(4): 114-120. [FU S H, ZHANG W G, LIU B Y, et al. Beijing mountain area soil Eros ion model[J]. Research of Soil and Water Conservation, 2001, 8(4): 114-120.]
[14] 卜兆宏, 周伏建, 唐万龙, 等. 水土流失定量遥感方法及其应用的研究[J]. 土壤学报, 1997, 34(3): 235-224. [BU Z H, ZHOU F J, TANG W L, et a1. A Study on uantitative remote sensing method of soil erosion and its application[J]. Acta Pedologica Sinica, 1997, 34(3): 235-224.]
[15] 张岩, 袁建平, 刘宝元. 土壤侵蚀预报模型中的植被覆盖与管理因子研究进展[J]. 应用生态学报, 2002, 13(8), 1033-1036. [ZHANG Y, YUAN J P, LIU B Y. Advance in researches on vegetation cover and management factor in the soil erosion prediction model[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 1033-1036.]
[16] 裴厦, 谢高地, 李士美, 等. 典型草地的土壤保持价值流量过程比较[J]. 生态学报, 2012, 32(13): 4025-4033. [PEI X, XIE G D, LI S M, et al. Soil conservation value flow processes of two typical grasslands[J]. Acta Ecologica Sinica, 2012, 32(13): 4025-4033.]
[17] 李亦秋, 冯仲科, 韩烈保, 等. 丹江口库区及上游生态系统土壤保持效益价值评估[J]. 中国人口·资源与环境, 2010, 20(5): 64-69. [LI Y Q, FENG Z K, HAN L B, et, al. Value evaluation of benefits of soil conservation to the ecosystem of Danjiangkou reservoir basin and upstream[J]. China Population, Resources and Environment, 2010, 20(5): 64-69.]
[18] 高江波, 周巧富, 常青, 等. 基于GIS和土壤侵蚀方程的农业生态系统土壤保持价值评估——以京津冀地区为例[J]. 北京大学学报(自然科学版), 2009, 45(1): 151-157. [GAO J B, ZHOU Q F, CHANG Q, et, al. Evaluating the ecological service function of soil conservation based on RUSLE and GIS[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 151-157.]
[1] 郭忠录, 马美景, 蔡崇法, 闫峰陵. 模拟降雨径流作用下红壤坡面侵蚀水动力学机制[J]. 长江流域资源与环境, 2017, 26(01): 150-157.
[2] 闫思宇, 王景燕, 龚伟, 罗建跃, 苏黎明, 舒正悦, 赵昌平, 蔡煜. 川南山地林分变化对土壤物理性质和抗蚀性的影响[J]. 长江流域资源与环境, 2016, 25(07): 1112-1120.
[3] 杨伟, 张琪, 李朝霞, 张利超, 蔡崇法. 几种典型红壤模拟降雨条件下的泥沙特征研究[J]. 长江流域资源与环境, 2016, 25(03): 439-444.
[4] 邓羽松, 李双喜, 丁树文, 蔡崇法, 夏栋, 刘丹露. 鄂东南崩岗不同层次土壤分形特征及抗蚀性研究[J]. 长江流域资源与环境, 2016, 25(01): 63-70.
[5] 赵平伟, 郭萍, 李成武, 李立印, 张俊凯, 李屏, 邓辉敏. 云南不同量级降雨下的降雨侵蚀力特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2135-2141.
[6] 陈璇, 张萍萍, 田刚, 董良鹏, 韦惠红, 徐卫立, 岳岩裕, 车钦. 长江上游流域大洪水天气分型特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2142-2152.
[7] 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612.
[8] 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(06): 971-977.
[9] 吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷. 基于SCS-CN与MUSLE模型的三峡库区小流域侵蚀产沙模拟[J]. 长江流域资源与环境, 2015, 24(05): 860-867.
[10] 廖炜, 高超, 刘汉生, 吴宜进. 基于Logistic回归分析的农户参与水土流失治理状况研究——以鄂西地区为例[J]. 长江流域资源与环境, 2015, 24(05): 892-898.
[11] 程谅 郭忠录 秦嘉惠. 长期施肥对小麦—玉米轮作红壤抗蚀性影响[J]. 长江流域资源与环境, 0, (): 0-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 许晗之,汪院生,常本春,王腊春. 江苏太湖地区调水改善水环境研究[J]. 长江流域资源与环境, 2006, 15(Sup1): 92 -96 .
[3] 徐丽华,岳文泽,徐建华. 城市热场剖面的分形维数计算及其意义研究——以上海中心城区为例[J]. 长江流域资源与环境, 2007, 16(3): 384 .
[4] 冯 平,徐向广,李 海. 基于模糊集合分析的汛期分期方法及其应用[J]. 长江流域资源与环境, 2008, 17(3): 495 .
[5] 马荣华,杨桂山. 长江岸线与岛屿演化的空间分形研究——以江苏段为例[J]. 长江流域资源与环境, 2004, 13(6): 541 -545 .
[6] 胡冰川,吴 强,周曙东. 粮食生产的投入产出影响因素分析——基于江苏省粮食生产的实证研究[J]. 长江流域资源与环境, 2006, 15(1): 71 -75 .
[7] 贾 丽, 沈玉芳. 我国生态工业园发展的SWOT分析[J]. 长江流域资源与环境, 2007, 16(6): 711 .
[8] 谢月玉, 王式功, 董安祥, 尚可政. 澳洲冷空气活动与长江中下游降水的联系分析[J]. 长江流域资源与环境, 2009, 18(7): 625 .
[9] 虞孝感, 王磊. 极化区功能识别与评价指标研究[J]. 长江流域资源与环境, 2011, 20(07): 775 .
[10] 孙 君| 郇红艳. 基于F-AHP的产业转移后可持续发展评价模型构建与实证研究[J]. 长江流域资源与环境, 2011, 20(10): 1157 .