长江流域资源与环境 >> 2019, Vol. 28 >> Issue (02): 416-425.doi: 10.11870/cjlyzyyhj201902018

• 生态环境 • 上一篇    下一篇

秦巴山区降雨侵蚀力时空变化特征

邵祎婷1,2, 何毅3,4* ,穆兴民1,5,高鹏1,5,赵广举1,5,孙文义1,5   

  1. (1.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西 杨凌 712100;
    2.中国科学院大学,北京 100049;3.陕西省地表系统与环境承载力重点实验室,陕西 西安 710127;
    4.西北大学城市与环境学院,陕西 西安 7101275;5.西北农林科技大学黄土高原土壤侵蚀
    与旱地农业国家重点实验室,陕西 杨凌 712100)
  • 出版日期:2019-02-20 发布日期:2019-02-25

Spatiotemporal Variation of Rainfall Erosivity in Qin-Ba Mountains Region

SHAO Yi-ting1,2, HE Yi3,4, MU Xing-min1,5, GAO Peng1,5, ZHAO Guang-ju1,5, SUN Wen-yi1,5    


  1. (1.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, 
    Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 2. University of Chinese Academy of 
    Sciences, Beijing 100049, China; 3. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, 
    Xi’an 710127, China; 4. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China; 
    5. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China)
  • Online:2019-02-20 Published:2019-02-25

摘要:  降雨侵蚀力时空变化特征的研究对区域土壤侵蚀风险评估及水土保持规划具有重要的意义。利用秦巴山区及周边地区共63个气象站1961~2016年的逐日降雨量数据计算各站的降雨侵蚀力,借助Kriging空间插值法、Mann-Kendall趋势检验、Pettitt突变检验等方法分析了秦巴山区降雨侵蚀力的时空变化特征。结果表明:秦巴山区年均降雨侵蚀力为3 696 MJ·mm/(hm2·h·a),年内变化呈单峰型,7月最大,占全年的26.6%;四季中,夏季最大,冬季最小。代际间,20世纪80年代的降雨侵蚀力最大,90年代最小。年际间,年降雨侵蚀力存在明显的阶段性,但未表现出显著的趋势性和突变性特征。秦巴山区多年平均降雨侵蚀力呈南高北低的分布格局,不同地区年均降雨侵蚀力变化于787~8 858 MJ·mm/(hm2·h·a)之间;整体而言,年降雨侵蚀力随纬度增加而减小,随海拔升高而减小。

Abstract: The investigation of the spatiotemporal heterogeneity of rainfall erosivity is significant in regional soil erosion risk assessment as well as water and soil conservation planning. Based on long-period(1961-2016) daily rainfall data from 63 meteorological stations located in Qin-Ba mountains region and its surrounding area, this study calculated values of rainfall erosivity and analyzed the spatial and temporal variation of rainfall erosivity using Kriging spatial interpolation method, Mann-kendall trend test, Pettitt test and other methods. Results showed that the regional average annual rainfall erosivity was 3 696 MJ·mm/(hm2·h·a). The rainfall erosivity showed a unimodal intra-annual variation with a maximum value in July accounting for 26.6 % of the total year and also had a strong seasonal pattern with maximum rainfall erosivity in summer and minimum in winter. The rainfall erosivity reached its maximum in the 1980s and minimum in the 1990s. The annual rainfall erosivity had distinct phases, whereas had no significant trends and mutations. It turned out that the spatial distribution of the average annual rainfall erosivity in the region increased from north to south varying from 787 to 8 858 MJ·mm/(hm2 ·h·a). Furthermore, the average annual rainfall erosivity of Qin-Ba mountains region generally decreased with the increasing of latitude(P<0.01) and altitude(P<0.01).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周金星, 魏 远, 漆良华, 张旭东. 基于ISODATA法的三峡库区生态区划[J]. 长江流域资源与环境, 2008, 17(3): 446 .
[2] 栾青杉, 孙军. 2005年秋季长江口及其邻近水域浮游植物群集[J]. 长江流域资源与环境, 2010, 19(2): 202 .
[3] 刘毅, 陶勇, 万开元, 张过师, 陈树森, 陈防. 丹江口库区坡耕地柑桔园不同覆盖方式下地表径流氮磷流失特征[J]. 长江流域资源与环境, 2010, 19(11): 1340 .
[4] 凡非得| 王克林 | 宣 勇 | 岳跃民. 西南喀斯特区域生态环境敏感性评价及其空间分布[J]. 长江流域资源与环境, 2011, 20(11): 1394 .
[5] 王赞信. 利用水葫芦治理水体富营养化与生产沼气的环境经济学分析[J]. 长江流域资源与环境, 2012, 21(08): 972 .
[6] 吕 文 |杨桂山 |万荣荣. 不同植茶年龄茶园蒸散速率的日变化——以宜兴市为例[J]. 长江流域资源与环境, 2012, 21(11): 1370 .
[7] 吴颖超,王震,曹磊,赵言文. 基于GIS和PSR的江苏省水土流失易发区划分研究[J]. 长江流域资源与环境, 2015, 24(04): 690 .
[8] 童庆蒙 张露 张俊飚. 土地流转能否提升农民生活满意度?——来自湖北省江汉平原地区的经验证据[J]. 长江流域资源与环境, 0, (): 0 .
[9] 周晟吕, 李月寒, 胡 静, 封竞男. 基于问卷调查的上海市大气环境质量改善的支付意愿研究[J]. 长江流域资源与环境, 2018, 27(11): 2419 -2424 .
[10] 屈小娥. 中国生态效率的区域差异及影响因素——基于时空差异视角的实证分析[J]. 长江流域资源与环境, 2018, 27(12): 2673 -2683 .