长江流域资源与环境 >> 2019, Vol. 28 >> Issue (04): 829-838.doi: 10.11870/cjlyzyyhj201904009

• 自然资源 • 上一篇    下一篇

国家园林县城省际分布格局演化及影响因素

韩  静,芮  旸*,马  滕,武  鹏,晁  静   

  1. (西北大学城市与环境学院,陕西 西安710127)
  • 出版日期:2019-04-20 发布日期:2019-05-10

Evolution and Influencing Factors of Inter Provincial Distribution Pattern of National Garden Counties

HAN Jing, RUI Yang, MA Teng, WU Peng, CHAO Jing   

  1. (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)
  • Online:2019-04-20 Published:2019-05-10

摘要: 针对中国城市分布格局研究方法上的不足,以国家园林县城这一特殊类型城市为例,采用探索性空间数据分析和不平衡指数等方法,刻画其数量省际分布格局的演化;综合运用逐步回归、地理加权回归和地理探测器模型,在省域尺度上探究其分布的影响因素及其空间异质性和交互作用。结果表明:(1)国家园林县城分布一直具有显著的全局和局部空间自相关性,所形成的空间异质性格局基本保持稳定,但数量在省际间的离散程度总体变大;(2)全社会固定资产投资、县城建成区绿地率、(自治)县旗数、地方一般公共预算收入是引致国家园林县城数量空间分异的显著性因素,其作用方向除后者外均为正向,作用强度以前者为强;(3)各因素的效应均存在明显的空间非平稳性,但其作用的空间分布模式互有区别;影响也并非相互独立,其间存在非线性增强型和双因子增强型两类交互作用,所产生的影响力均要大于单独作用时,其中县城建成区绿地率对其他因素的增强作用最为明显。

Abstract: In view of the deficiencies in the researching methods of urban distribution pattern in China, taking national garden counties as a special example, using methods of ESDA and imbalanced index to characterize the evolution of the number of provinces in the distribution pattern; Stepwise regression model, GWR and GeoDetector are also be applied to explore the influencing factors of its distribution and its spatial heterogeneity and interaction on the provincial scale. The results show that: (1)The distribution of national garden counties has been characterized by significant global and local spatial autocorrelation. The spatial heterogeneity of the counties has remained stable, but the number of the counties has become more discrete among provinces as a whole. (2)Total investment in fixed assets, green space ratio in built-up area of county, number of (Autonomous)Counties/Banners and local general public budget revenue are the significant factors leading to the spatial differentiation of the number of national garden counties. In case of the direction affected, these factors are all positive except for the last one. (3)The effects of each factor demonstrate obvious spatial non-stationarity, but the spatial distribution patterns of their effects are different; The influence is also not independent, there are two kinds of interaction, including nonlinear enhancement and bi-factor enhancement, the influence of which is greater than that of factors acting alone, and green space ratio in built-up area of county has the most promoting effect on other factors.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[2] 徐东坡|刘 凯|张敏莹|段金荣|周彦锋|施炜纲. 2003~2010年长江下游两江段鱼类群落结构特征的年际变动[J]. 长江流域资源与环境, 2013, 22(8): 1156 .
[3] 王玉良,王晖,徐如松,阿不都拉·阿巴斯. 安徽省地衣研究的历史分析[J]. 长江流域资源与环境, 2014, 23(08): 1072 .
[4] 朱康文, 李月臣, 周梦甜. 基于CLUE-S模型的重庆市主城区土地利用情景模拟[J]. 长江流域资源与环境, 2015, 24(05): 789 -797 .
[5] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743 -750 .
[6] 张华明, 王瑜鑫, 张聪聪. 中国省域能源强度趋同俱乐部存在性及影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 657 -666 .
[7] 王锐, 余涛, 杨忠芳, 侯青叶, 曾庆良, 马宏宏. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(07): 1460 .
[8] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[9] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, 0, (): 0 .
[10] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .