长江流域资源与环境 >> 2019, Vol. 28 >> Issue (09): 2251-2261.doi: 10.11870/cjlyzyyhj201909023

• 生态环境 • 上一篇    下一篇

基于LUR模型探究城市景观格局对PM2.5浓度的影响——以长株潭城市群为例

杨婉莹1,刘艳芳1,2*, 刘耀林1,2,3, 安子豪1,4, 银超慧1   

  1. (1. 武汉大学资源与环境科学学院,湖北 武汉 430079;2. 武汉大学地理信息系统教育部重点实验室,
    湖北 武汉 430079;3. 武汉大学地理空间信息技术协同创新中心,湖北 武汉 430079;
    4. 交通研究院,利兹大学,利兹 LS2 9JT)
  • 出版日期:2019-09-20 发布日期:2019-09-17

Investigating the Effect of Urban Landscape Pattern on PM2.5 Concentration Based on LUR Model: A Chang-Zhu-Tan Urban Agglomeration Case Study

YANG Wan-ying1, LIU Yan-fang1,2, LIU Yao-lin1,2,3, AN Zi-hao1,4, YIN Chao-hui1   

  1. (1.School of Resource and Environment Science, Wuhan University, Wuhan 430079, China; 2. Key Laboratory of 
    Geography Information System, Ministry of Education, Wuhan University, Wuhan 430079, China; 3. Collaborative Innovation 
    Center of Geospatial Information Technology, Wuhan University, Wuhan 430079, China; 
    4. Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom)
  • Online:2019-09-20 Published:2019-09-17

摘要: 随着城市化进程的加快,空气污染问题已成为中国最主要城市问题之一,严重影响公众健康。当前微观尺度下空气监测点周围景观格局对PM25浓度影响的研究较少,以长株潭城市群为例,选取地形、污染源、人口、道路交通、土地利用与城市景观格局6大类预测变量,其中城市景观格局选取边缘密度、连续度、形状指数、斑块平均面积、蔓延度、均匀度指数7个景观指数,运用逐步线性回归模型,探究城市景观格局对PM25浓度的影响。研究结果显示:(1)所选取的土地景观格局指数可以解释研究区PM25浓度的732%的变异,模型拟合较好;(2)影响PM25浓度的土地利用类型包括建设用地、林地、草地与水体。微观尺度下城市各类型景观格局中连续度和形状指数对PM25影响显著,建设用地连续度越高,分布越集聚,PM25浓度越高;水体形状指数越小,形状越简单规则,越易降低PM25浓度;(3)城市整体景观格局中,景观聚集程度与景观多样性等因素对PM25浓度产生重要影响。减少景观内各类型斑块的离散分布,使各景观类型均匀分布于整体景观内,有助于降低PM25浓度。研究结果可为未来大气防治与城市规划提供参考依据。〖HJ1〗〖HJ〗〖JP+1〗


Abstract: With the acceleration of urbanization, air pollution has become one of the most important urban problems in China, affecting public health seriously. At present, there are few studies to explore the influence of landscape pattern on PM2.5 concentration at the microscopic scale. Therefore, the current study, taking the Chang-Zhu-Tan urban agglomeration as an example, selected six predictors including terrain, pollution, population, road traffic, land use and urban landscape pattern, then used a stepwise linear regression model to explore the effects of urban landscape pattern on PM2.5 concentration. The urban landscape pattern was represented by seven landscape metrics which were ED, CONTIG, LSI, AREA_MN, CONTAG and SHEI. The results showed that: 1) the selected landscapes metrics could explain 73.2% variation of PM2.5 concentration in the study area and the model fitted well; 2) the types of land use that affected PM2.5 concentration included construction land, woodland, grassland and water body. At the microscopic scale, landscape metrics including CONTIG and LSI had significant effects on PM2.5. When the contiguity of construction land was higher, the distribution was more concentrated. Consequently, PM2.5 concentration was higher. If the shape index of water body was smaller, the shape of water body was simpler and more regular. It was easier to reduce PM2.5 concentration; 3) at the overall urban landscape-level, landscape aggregation degree and landscape diversity had important impacts on PM2.5 concentration. Reducing the discrete distribution of various types of patches in the landscape, which could make each landscape type evenly distribute in the overall landscape, could help to reduce PM2.5 concentration. Results of this research could provide reference for future atmosphere control and urban planning.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡振鹏, 葛, 刚, 刘成林, 陈伏生, 李, 述. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究[J]. 长江流域资源与环境, 2010, 19(06): 597 .
[2] 梁涛, 史正涛, 刘志国. 昆明市街道灰尘粒度特征及其环境意义[J]. 长江流域资源与环境, 2011, 20(1): 122 .
[3] 邵玉龙| 许有鹏| 马爽爽. 太湖流域城市化发展下水系结构与河网连通变化分析——以苏州市中心区为例[J]. 长江流域资源与环境, 2012, 21(10): 1167 .
[4] 吕卫国| 陈 雯. 沪苏通三角区产业经济一体化时空演变及其影响机制[J]. 长江流域资源与环境, 2013, 22(06): 679 .
[5] 李杨杰, 陈振楼, 王初, 胡泓. 长江口潮间带湿地涨退潮期N2O的排放通量研究[J]. 长江流域资源与环境, 2015, 24(03): 408 .
[6] 周少甫, 赵明玲, 苏龙. 中国碳排放库兹涅茨曲线实证研究——基于Gregory-Hansen协整分析[J]. 长江流域资源与环境, 2015, 24(09): 1471 -1476 .
[7] 马才学, 赵利利, 柯新利. 湖北省耕地非农化压力的时空演变格局[J]. 长江流域资源与环境, 2016, 25(01): 71 -78 .
[8] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[10] 芦鑫, 殷淑燕, 王水霞, 高涛涛. 秦岭南北地区农业气候资源时空变化特征[J]. 长江流域资源与环境, 2018, 27(08): 1866 .