长江流域资源与环境 >> 2021, Vol. 30 >> Issue (3): 644-653.doi: 10.11870/cjlyzyyhj202103012

• 生态环境 • 上一篇    下一篇

长江中游平原湖区人工林枯落物和表层土壤持水特性

胡文杰1,庞宏东1,王晓荣1,付  甜1,胡兴宜1* , 来生艳2, 穆俊明3   

  1. (1.湖北省林业科学研究院,湖北 武汉 430075; 2.湖北省石首市林业局,湖北 荆州 434400;3.湖北省林业勘察设计院,湖北 武汉 430079)
  • 出版日期:2021-03-20 发布日期:2021-04-07

Litter and Topsoil Water Holding Characteristics of Artificial Forest in Basin Plain Lake Area of Yangtze River

HU Wen-jie 1,PANG Hong-dong 1,WANG Xiao-rong 1,FU Tian 1,HU Xing-yi 1,LAI Sheng-yan 2,MU Jun-ming 3   

  1. (1.Hubei Academy of Forest, Wuhan 430075, China; 2. Shishou Forestry Bureau, Jingzhou 434400, China; 3.The Forestry Prospect & Design Institute of HuBei Province, Wuhan 430079, China)
  • Online:2021-03-20 Published:2021-04-07

摘要: 研究长江流域平原湖区人工林的水源涵养功能,对长江两岸造林绿化和生态修复具有重要指导意义。通过野外调查,采用室内浸泡法,分析比较了7种不同林分类型枯落物层和土壤表层的水源涵养能力。结果表明:(1)枯落物半分解层蓄积量大于未分解层,未分解层蓄积量以池杉林(Taxodium ascendens)最大,半分解层蓄积量以苏柳林(Salix jiangsuensis)最大。池杉林的总蓄积量最大,为3.90 t/hm2 ;(2)未分解层最大持水率大于半分解层,其值分别为263.63%~530.86%和209.17%~277.91%。未分解层和半分解层的最大〗持水量为0.95~4.48和4.15~6.02 t/hm2 ,分别以池杉林和苏柳林最大;(3)未分解层有效拦蓄量为0.44~3.11 t/hm2 ,半分解层为0.75~3.82 t/hm2 ,分别以池杉林和二球悬铃木林(Platanus acerifolia)最高。总最大持水量和总有效拦蓄量均以池杉林最大,分别为9.61和5.64 t/hm2 ;(4)枯落物持水量随浸水时间的延长表现为先显著增加后减缓,最后达到饱和,两者之间呈对数函数关系。枯落物吸水速率随浸水时间的延长表现为前期吸水速率较大,后急剧变小,最后趋近于0,两者之间呈幂函数关系;(5)表层土壤最大持水量和有效持水量最大的均为苏柳林,分别为1 116.27和213.27 t/hm2 。枯落物层以池杉林水源涵养能力较好,土壤表层以苏柳林水源涵养能力较好。总体来看,以苏柳林的综合水源涵养能力较好。

Abstract: Studying the water conservation function of artificial forests in the basin plain lake area of Yangtze river is great significance to guide the afforestation and ecological restoration along the Yangtze riverbank. In this paper, the water conservation capacity of litter layer and topsoil of 7 different forest types were analyzed and compared by the soaking method based on field investigation. The results showed that, (1) The litter accumulation of semi-decomposed layer was larger than that of undecomposed layer, and the -Taxodium ascendens forest had the largest litter accumulation among the undecomposed layers, while the Salix jiangsuensis forest had the largest litter accumulation among the semi-decomposed layer. The total litter accumulation of Taxodium ascendens forest was largest, which was 3.90 t/hm2. (2) The maximum water holding rate of the undecomposed layer (263.63%-530.86%) was greater than that of semi-decomposed layer(209.17%-277.91%). The maximum water capacity of the undecomposed layer and the semi-decomposed layer were 0.95-4.48 t/hm2 and 4.15-6.02 t/hm2, respectively, and the Taxodium ascendens forest and Salix jiangsuensis forest exbihited highest maximum water capacity-correspondingly. (3) The effective storage capacity of undecomposed layer was 0.44-3.11 t/hm2, of which the Taxodium ascendens forest was highest. And the effective storage capacity of semi-decomposed layer was 0.75-3.82 t/hm2, of which the Platanus acerifolia forest was highest. Among all the forest types, the total maximum water holding capacity and the total effective storage capacity of Taxodium ascendens forest were both largest and its values were 9.61 and 5.64 t/hm2, respectively. (4) With the-immersion time prolonged, the litter water holding capacity increased significantly at the beginning, and then slowed down, and finally reached saturation, the relationship between them  showed as logarithmic function. Otherwise, With the immersion time prolonged, the litter water absorption rate was higher in the early stage, then decreased sharply, and finally approached 0, the relationship between them was power function. (5) The maximum and effective water holding capacity of Salix jiangsuensis forest were largest in topsoil layer among all the forest types, which was 1 116.27 and 213.27 t/hm2, respectively. For the litter layer, the water conservation ability of Taxodium ascendens forest was better than others, while, the water conservation ability of Salix jiangsuensis forest was better than others in the topsoil. In general, Salix jiangsuensis forest is superior on water conservation comprehensively.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[3] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[4] 蔡邦成,陆根法,宋莉娟,陈克亮. 南水北调东线水源地保护区生态建设的生态经济效益评估[J]. 长江流域资源与环境, 2006, 15(3): 384 -387 .
[5] 陈振杰, 李满春, 刘永学. 基于GIS的桐庐县农村居民点空间格局研究[J]. 长江流域资源与环境, 2008, 17(2): 180 .
[6] . 气候资料高精度模拟与土地利用动力学方法在中国水文规划中的应用(论文摘编)[J]. 长江流域资源与环境, 2006, 15(5): 649 .
[7] 沃克尔·海德,布吉特·莱赫特. 德国豪特尔·勒瑙洪泛区土地利用综合设想[J]. 长江流域资源与环境, 2006, 15(5): 641 -646 .
[8] 李 娜,夏永久. 宁波城市基础设施现代化水平综合评价与预测[J]. 长江流域资源与环境, 2006, 15(2): 136 -141 .
[9] 段学军, 陈 雯. 省域空间开发功能区划方法探讨[J]. 长江流域资源与环境, 2005, 14(5): 540 -545 .
[10] 陶豫萍,吴 宁,罗 鹏,刘 兵. 森林对污染物(SO2-4)的过滤器效应研究[J]. 长江流域资源与环境, 2005, 14(5): 628 -632 .