长江流域资源与环境 >> 2021, Vol. 30 >> Issue (6): 1329-1342.doi: 10.11870/cjlyzyyhj202106005

• 生态环境 • 上一篇    下一篇

长江流域近地表气温对地理位置和高程的依赖性分析

蒋  艳1, 2,贺新光1, 2* ,邓宇鹏1,章新平1, 2   

  1. (1. 湖南师范大学资源与环境科学学院,湖南 长沙 410081;2. 湖南师范大学地理空间大数据挖掘与应用湖南省重点实验室,湖南 长沙 410081)
  • 出版日期:2021-06-20 发布日期:2021-06-30

Dependence Analysis of Near-Surface Air Temperature on Elevation and Geographical Coordinates for Yangtze River Basin

JIANG Yan 1, 2, HE Xin-guang 1, 2, DENG Yu-peng 1, ZHANG Xin-ping 1, 2   

  1. (1. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China;2. Key Laboratory of Geospatial Big Data Mining and Application, Hunan Province, Changsha 410081, China)
  • Online:2021-06-20 Published:2021-06-30

摘要: 利用长江流域189个气象站1963~2018年的数据资料,建立月(季)平均气温、平均最高和最低气温的逐步多元回归(SMR)模型,分析近地表气温梯度(TG)的变化特征,并探究降水梯度(PG)、相对湿度和水汽通量状况对TG变化的胁迫过程。结果表明:(1)各类气温的纬向(TGa)和经向(TGo)梯度均在冬季较大而夏季较小,但垂直梯度(TGe)的变化相异,而且夜间的TGa和TGe总体较日间的大。(2)气温对纬度、经度和高程的偏依赖程度较相应的TG大但两者的变化趋势类似,且各类气温对高程的偏依赖程度最高,而平均最低气温总体上对各地理因子的依赖性最强。(3)流域相对湿度的时空变化是导致气温模型精度夏高冬低的重要原因,而同海拔站点间相似的地理环境使其模型残差呈现总体偏正或偏负的季节变化。(4)流域地形、降水、相对湿度和水汽通量对TG变化具有调节和控制作用。其中,干冷空气势力越强TGa越大,水汽通量场的转换强化了TGa变化的季节性;相对湿度分布越均匀TGo越小,但地形作用使其变大;而日、夜间云辐射强迫温度效应的不同促使平均最高和最低气温垂直梯度变化趋势相反。

Abstract: Using the data set of 189 meteorological stations in the Yangtze River Basin from 1963 to 2018, the stepwise multiple regression (SMR) models are established for monthly (seasonal) average air temperature, monthly (seasonal) average maximum and minimum air temperatures to analyze the variation characteristics of near-surface air temperature gradients (TG). The forcing processes for TG variations are then investigated by using precipitation gradient (PG), relative humidity and moisture flux. The results are as follows: (1) The latitudinal (TGa) and longitudinal (TGo) gradients for respective classes of temperatures are steeper in winter but shallower in summer, while the changes of vertical gradients (TGe) are different for three classes of temperatures. Moreover, there are steeper values of TGa and TGe in the nighttime than daytime. (2) Although the partial correlation coefficients between temperature versus latitude, longitude and elevation are greater than the corresponding TG values, their changing trends are similar. All classes of temperatures have the highest partial dependence on elevation, while the average minimum temperature has overall the strongest dependence on each of geographical factors. (3) The space-time variations of relative humidity in the basin make the SMR models of air temperature have a more powerful performance in summer than winter. However, the similar geographic environments between the stations within the same altitude range lead to the model residuals exhibiting overall positive or negative values in a season. (4) The TG changes are modulated and controlled by the topography, precipitation, relative humidity and moisture flux in the basin. The seasonality of TGa variations is intensified by the conversion of moisture flux, and the stronger the dry cold air is, the steeper of the TGabecome. Meanwhile, the shallower values of TGomay be ascribed to the relatively uniform distribution of relative humidity, while the terrain effect makes them steeper. Besides, there is an opposite trend between vertical gradients of average maximum and minimum temperatures owing to the different temperature effects of cloud-radiative forcing in the day and night time.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[6] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[7] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .