长江流域资源与环境 >> 2021, Vol. 30 >> Issue (8): 1890-1900.doi: 10.11870/cjlyzyyhj202108011

• 生态环境 • 上一篇    下一篇

基于MODIS数据的堵河流域生态指数变化及与气候因子的相关性分析

马永明1,2,张利华1* ,翟宏宇2,符雅盛1,崔  越1   

  1. (1.中国地质大学(武汉),湖北 武汉 430074;2.昭通学院,云南 昭通 657000)
  • 出版日期:2021-08-20 发布日期:2021-09-06

Analysis of Correlation between  Ecological Index Change and Climate Factors in Duhe River Basin Based on MODIS Data

MA Yong-ming 1,2 , ZHANG Li-hua 1, ZHAI Hong-yu 2, FU Ya-sheng 1, CUI Yue 1   

  1. (1. China University of Geosciences (Wuhan), Wuhan 430074, China; 2. Zhaotong University, Zhaotong 657000, China)
  • Online:2021-08-20 Published:2021-09-06

摘要: 堵河流域是南水北调中线工程的重要水源区,流域的生态环境决定着南水北调的经济效益和水质状况。基于MODIS影像(2001~2017年)、数字表面模型(DSM)与气象数据,采用均值统计法、一元线性回归趋势法和相关分析法对堵河流域总初级生产力(GPP)、归一化差异植被指数(NDVI)、和蒸散发(ET)等生态指数的时空变化特征及其与气象因子的相关性进行研究,探讨堵河流域生态环境演变规律及其气候响应特征。结果表明:(1)堵河流域多年月均GPP、NDVI和ET分别为1 868.67 gC/(m2·month-1)、0.605和959.975 mm/month,植被覆盖率较高;多年年均 GPP、NDVI和ET呈现相似的空间分布规律,堵河南岸值均高于北岸,竹溪河流域值均最低,最高值均位于神农架林区在内的高海拔区域。(2)年均GPP、NDVI和ET值总体呈波动上升的趋势,表明堵河流域的生态环境在向好的趋势发展;年内呈周期性单峰变化趋势,7月达到最大值;具有较强的季节性,夏季GPP、NDVI和ET值最大,冬季最小。(3)流域月均NDVI、ET和GPP之间均具有较强的正相关性,其中月均NDVI与月均GPP\\ET的相关系数R2均为0.65,月均ET与月均GPP的R2为0.70。(4)流域月均GPP与月均降水的相关性强于月均气温,而NDVI、ET与气温的相关性均大于降水;GPP、NDVI和ET的变化与气温、降水呈现同期变化规律,NDVI、ET和GPP的变化对气候因子的响应不到一个月的滞后性。

Abstract: The Duhe River Basin is an important water source in the middle line of the South-to-North Water Transfer Project. The ecological environmental status of the basin is the significant factors affecting the economic benefits and water quality of the project. Based on the MODIS image production (2001-2017), digital surface model (DSM) and meteorological data, this paper analyze the spatio-temporal distribution and influencing meteorological factors of gross primary production (GPP), normalized difference vegetation index (NDVI) and evapotranspiration(ET) in Duhe River Basin using the mean statistical method, the linear regression trend method and the correlation analysis method. The results show that: (1) The monthly average GPP, NDVI and ET in the Duhe River Basin is 1 868.667 gC/(m 2·month-1 ), 0.605, and 959.975 mm/month respectively. The spatial distribution of the mean annual average GPP, NDVI and ET present a similar result. The value of GPP, NDVI and ET in the basin’s north part is smaller than that in the basin’s south area. The lowest value is distributed in the Zhuxi River Basin, and the highest value is distributed in the high-altitude mountainous areas. (2) The annual average NDVI, ET, and GPP values develop in fluctuation and show an upward trend in general, which indicates that the ecological environment of the basin is improving and developing. The value of NDVI, ET, and GPP is the highest in summer, reaching the maximum in July, and the lowest in winter. (3) The monthly average GPP, NDVI and ET have strong positive correlation. The correlation coefficient between monthly average NDVI and monthly average ET has a same value with the correlation coefficient between monthly average NDVI and monthly average GPP(R2 = 0.65). The correlation coefficient between monthly average and monthly average ET is 0.70. (4) Compare with monthly average temperature, the monthly average GPP is more relevant with monthly average precipitation. The monthly average NDVI and ET have higher correlation coefficient with temperature than does precipitation. The variation tendencies of NDVI, ET and GPP in the basin are consistent with the temperature and precipitation. The response of NDVI, ET and GPP to the climatic factors is less than one month.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[2] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[3] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[4] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[5] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[6] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[7] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[8] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[9] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[10] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .