长江流域资源与环境 >> 2021, Vol. 30 >> Issue (9): 2126-2137.doi: 10.11870/cjlyzyyhj202109008

• 自然资源 • 上一篇    下一篇

FAST电磁波宁静区植被覆盖度及景观格局时空变化

张  淑 1,2,3,周忠发 1,2,3* ,张文辉 1,2,3,黄登红 1,2,3   

  1. (1.贵州师范大学喀斯特研究院/地理与环境科学学院,贵州 贵阳 550001;2.国家喀斯特石漠化防治工程技术研究中心,贵州 贵阳 550001;3.贵州省喀斯特山地生态环境国家重点实验室培育基地,贵州 贵阳 550001)
  • 出版日期:2021-09-20 发布日期:2021-09-27

Spatiotemporal Variation and Landscape Pattern Analysis of VegetationSpatiotemporal Variation and Landscape Pattern Analysis of Vegetation  Coverage in  FAST Radio Quiet Zone

ZHANG Shu 1,2,3, ZHOU Zhong-fa 1,2,3, ZHANG Wen-hui 1,2,3, HUANG Deng-hong 1,2,3   

  1. (1. School of Geography and Environmental Science/Institute of Karst Science, Guizhou Normal University, Guiyang 550001, China;2. State Engineering Technology Institute for Karst Desertification Control,Guiyang  550001, China; 3 The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China)
  • Online:2021-09-20 Published:2021-09-27

摘要: 植被覆盖度是描述区域内植被修复和生长的重要因子,定量研究了FAST项目实施前后植被覆盖度变化时空特征,并利用景观格局对该区的植被覆盖度进行分析。基于Landsat TM/OLI影像反演FAST电磁波宁静区2008~2018年5期植被覆盖度数据,利用Fragstats 4.2进行景观格局分析。结果表明:(1)2008~2018年,林地的增长趋势明显,该区域的植被覆盖度呈现明显的时空差异特征,植被覆盖类型上,2008年集中在中、低植被覆盖度,2018年多为中高、高植被覆盖度。(2)从植被覆盖度的转移情况可以看出,植被覆盖度增加的面积远大于退化的面积,增长趋势显著。核心区2010~2016年的植被覆盖度增长面积为48.01 km2 ,退化面积仅为16.19 km2 ,实际表现为该地区的生态环境质量明显改善,森林面积增加。(3)FAST电磁波宁静区林地面积的增加对植被覆盖度具有正向影响,同时在景观格局上表现为植被覆盖度的斑块密度和斑块数量呈下降趋势,景观破碎化程度降低,连通性增强,景观格局趋于稳定,聚集度上升,说明有效的林地保护措施对该地区的景观格局影响很大,稳定的景观格局对台址的保护起到重要作用,同时为该地区不同范围的植被保护力度提供遥感监测支撑。

Abstract: Vegetation coverage is an important factor describing the restoration and growth of vegetation in a region. Accurately and efficiently quantifying the effects of vegetation coverage is changeing and spatiotemporal characteristics before and after FAST project implementation. Moreover, landscape indexes were also introduced to quantitatively understand vegetation coverage over the past 10 years. Based on the Landsat TM/OLI remote sensing images, the vegetation coverage of FAST radio quiet zone from 2008 to 2018 was retrieved, the Fragstats 4.2 was used to analyze the landscape pattern simultaneously. In this paper,(1) the overall vegetation coverage of FAST radio quiet zone from 2008 to 2018 was good, and the growth trend of woodland was so obvious that vegetation coverage in this zone shows spatiotemporal differences. For vegetation types, the region was dominated by low-medium and medium coverage vegetation in 2008, and most of them were medium-high and high coverage vegetation in 2018.(2) It can be seen from transition martrix of vegetation coverage that the area increased by vegetation coverage was much larger than degradation, and the growth trend was significant. The FAST core area of vegetation coverage was 48.01 km2  from 2010 to 2016, and degraded was only 16.19 km 2. The actual performance was that ecological environment quality of FAST core area was obviously improved, and woodland areas were increased.(3) There were similarities and differences in spatiotemporal patterns among different types of vegetation in FAST radio quiet zone. The increase of woodland areas had a positive effect on vegetation coverage. With the patch density and the number of patches declines, landscape fragmentation was reduced, connectivity was enhanced, the landscape pattern tended to be stable, and the degree of aggregation increasing. It shows that effective woodland protection measures have a great impact on the landscape pattern of this area, and stable landscape pattern plays an important role in the protection of FAST site. In conclusion, our study shows that remote sensing monitoring support for the vegetation protection in different areas of this area.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 苏荣瑞|熊勤学|耿一风|刘凯文|高华东|金卫斌. 利用多时相HJCCD影像监测江汉平原南部地区棉花和中稻种植面积[J]. 长江流域资源与环境, 2013, 22(011): 1441 .
[2] 杨少荣, 黎明政, 朱其广, 王美荣, 刘焕章. 鄱阳湖鱼类群落结构及其时空动态[J]. 长江流域资源与环境, 2015, 24(01): 54 .
[3] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[4] 陈炳. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, , (): 0 .
[5] 韦胜 徐建刚 马海涛. 长三角高铁网络结构特征及形成机制[J]. 长江流域资源与环境, , (): 0 .
[6] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, , (): 0 .
[7] 周晟吕, 李月寒, 胡 静, 封竞男. 基于问卷调查的上海市大气环境质量改善的支付意愿研究[J]. 长江流域资源与环境, 2018, 27(11): 2419 -2424 .
[8] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .
[9] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548 -2557 .
[10] 屈小娥. 中国生态效率的区域差异及影响因素——基于时空差异视角的实证分析[J]. 长江流域资源与环境, 2018, 27(12): 2673 -2683 .