长江流域资源与环境 >> 2022, Vol. 31 >> Issue (11): 2345-2356.doi: 10.11870/cjlyzyyhj202211002

• 区域可持续发展 • 上一篇    下一篇

中国高技术产业绿色创新效率的空间关联结构与影响机制分析

姚孟超1,段进军1,张仁杰2,玄泽源1   

  1. (1.苏州大学东吴商学院,江苏 苏州 215021;2.中国航天系统科学与工程研究院,北京 100037)
  • 出版日期:2022-11-20 发布日期:2022-12-26

Spatial Correlation Structure and Influencing Mechanism of Green Innovation Efficiency of China’s High-tech Industries

YAO Meng-chao1,DUAN Jin-jun1,ZHANG Ren-jie2,XUAN Ze-yuan1   

  1. (1.Dong Business School,Soochow University,Suzhow 215021,China;2.China Aerospece of Systems Science and Engineering,Beijing 100037,China)
  • Online:2022-11-20 Published:2022-12-26

摘要: 采用考虑非期望产出的SBM模型测算中国大陆30省市、自治区(西藏除外)高技术产业绿色创新效率,并借助社会网络分析与空间计量模型分别讨论其空间关联结构与影响因素。结果显示:(1)高技术产业绿色创新关联网络密度明显提升,但演化类型以低层级网络为主,整体网络结构仍处于初级阶段。(2)不同阈值下高技术产业绿色创新关联网络中心度均显著提升,但空间非均衡性特征依然存在且在第四层级网络阈值下更为突出。(3)政府性科技金融、信息化对绿色创新效率具有明显的促进作用,产业集聚在推动绿色创新效率过程中会导致负向的空间溢出,环境规制的影响并不显著,而对外开放水平阻碍了绿色创新效率的提升。应继续稳固京津冀、长三角在高技术产业绿色创新的龙头地位,提升区域一体化水平,加大政府性科技金融投入,提高信息化水平,推动绿色创新正向空间溢出。

Abstract: In this paper, the SBM model considering undesirable output is used to calculate the green innovation efficiency of high-tech industries in 30 provinces and autonomous regions (except Tibet ) in mainland China. Social network analysis and a spatial econometric model discuss the spatial correlation structure and influencing factors. The results show that: (1)The density of green innovation-related networks in the high-tech industry is significantly improved, but the evolution type is mainly low-level network, and the overall network structure is still in the initial stage. (2)Under different thresholds, the centrality of the green innovation correlation network of high-tech industries is significantly improved, but the spatial disequilibrium characteristics still exist and are more prominent under the fourth-level network threshold.(3)Governmental science and technology finance and informatization have a significant role in promoting green innovation efficiency. Industrial accumulation will lead to negative spatial spillover in promoting green innovation efficiency. The impact of environmental regulation is not apparent, and the level of opening up hinders the improvement of green innovation efficiency. We should continue to stabilize the leading position of Beijing-Tianjin-Hebei and Yangtze River Delta in green innovation of high-tech industries, improve regional integration, increase government investment in science and technology finance, improve the level of informatization, and promote the positive spatial spillover of green innovation.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[2] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[3] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰. 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征[J]. 长江流域资源与环境, 2018, 27(10): 2387 -2394 .
[4] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[5] 朱立一, 何伟, 朱璧然, . 纳米二氧化硅和铅复合暴露对 斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11): 2588 -2596 .
[6] 刘帅 何 青 谢卫明 郭磊城 沈芳. 近15年来长江口控制站徐六泾悬沙变化特征研究[J]. 长江流域资源与环境, , (): 0 .
[7] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[8] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[9] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[10] 陈 炳, 曾 刚, 曹贤忠, 宓泽锋. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, 2019, 28(03): 530 -541 .