长江流域资源与环境 >> 2023, Vol. 32 >> Issue (5): 1030-1041.doi: 10.11870/cjlyzyyhj202305013

• 生态环境 • 上一篇    下一篇

基于局地气候区的武汉市地表热环境研究

赵恩灵1,邓帆1,2*,李志远1,郑培鑫1,冯倩1,韩杨1   

  1. (1.长江大学地球科学学院,湖北 武汉 430100;2.自然资源部城市国土资源监测与仿真重点实验室,广东 深圳 518034)
  • 出版日期:2023-05-20 发布日期:2023-05-19

Study on the Thermal Environment of Wuhan City Based on Local Climate Zones

ZHAO En-ling1, DENG Fan1,2, LI Zhi-yuan1, ZHENG Pei-xin1, FENG Qian1, HAN Yang1   

  1. (1. School of Geosciences, Yangtze University, Wuhan 430100, China; 2. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China)
  • Online:2023-05-20 Published:2023-05-19

摘要:  对城市热环境与城市形态特征间关系的定量分析,能为城市国土空间规划、城市生态环境的改善提供依据。局地气候区(Local Climate Zones, LCZ)可以很好反映城市局部气候的差异,因此可以基于LCZ构建局部气候与城市形态之间的定量关系来研究城市热环境。利用Landsat-8遥感数据反演地表温度,基于Sentinel-2数据利用深度学习方法进行局地气候区分类,分析各类别LCZ的地表温度与城市地表形态的关系,以此分析武汉市地表热环境特征。结果表明,不同LCZ类别间的地表温度存在较大差异,城市形态对地表温度有较大影响。其中:(1)LCZ10(重工业)温度最高,LCZG(水体)温度最低,且夏季各类别的温差大于冬季;(2)密集型建筑(LCZ1-3)的地表温度比开阔型建筑(LCZ4-6)高,低层建筑比高层建筑的地表温度高;(3)城市形态中对地表温度影响较大的为水域比例(WSF)、建筑高度(BH)和建筑比例(BSF),其中水域比例(WSF)和建筑高度(BH)与地表温度呈明显的负相关,建筑比例(BSF)与地表温度呈正相关。

Abstract: Quantitative analysis of the relationship between urban thermal environment and urban morphological characteristics can provide a basis for urban territorial space planning and improvement of urban ecological environment. Local Climate Zones (LCZ) can well reflect the difference in local climate in cities. Therefore, the quantitative relationship between local climate and urban morphology can be constructed based on LCZ to study the urban thermal environment. In this paper, the Landsat-8 remote sensing data is used to invert the surface temperature, and the deep learning method is used to classify the local climate zone based on the Sentinel-2 data. The results show large differences in the surface temperature between different LCZ categories, and the urban morphology had a greater impact on the surface temperature. Among them: (1) LCZ10 (heavy industry) had the highest temperature, LCZG (water body) had the lowest temperature, and the temperature difference of each category in summer was greater than that in winter; (2) The surface temperature of dense buildings (LCZ1-3) was higher than open buildings (LCZ4-6), and the surface temperature of low-rise buildings was higher than high-rise buildings; (3) In urban morphology, the water proportion (WSF), building height (BH) and building proportion (BSF) had a greater impact on the surface temperature, of which the water proportion (WSF) and building height (BH) were significantly negatively correlated with land surface temperature, and building proportion (BSF) was positively correlated with land surface temperature.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[3] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[4] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[5] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[6] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[7] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[8] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .
[9] 田 鹏, 李加林, 史小丽, 王丽佳, 刘瑞清. 浙江省土地利用格局时空变化及生态风险评价[J]. 长江流域资源与环境, 2018, 27(12): 2697 -2706 .
[10] 危小建, 陈竹安, 张 蕾, 江 平, 吴 芳, . 引入城市扩张干扰效应的生态服务价值化方法改进[J]. 长江流域资源与环境, 2019, 28(01): 30 -38 .