长江流域资源与环境 >> 2023, Vol. 32 >> Issue (7): 1510-1520.doi: 10.11870/cjlyzyyhj202307014

• 生态环境 • 上一篇    下一篇

横断山区河流水系对乡村聚落分布的影响特征——以岷江上游为例

项清1,于欢1*,阚瑷珂2,3,黄弘2,何杰2   

  1. (1.成都理工大学地球科学学院,四川 成都 610059; 2.成都理工大学旅游与城乡规划学院,四川 成都 610059;3.四川省高等学校人文社会科学重点研究基地青藏高原及其东缘人文地理研究中心,四川 成都 610059)

  • 出版日期:2023-07-20 发布日期:2023-07-21

Influence Characteristics of River Water System on Rural Settlement  Distribution in Hengduan Mountain Area:A Case Study of the Upper Reaches of Minjiang River

XIANG Qing1,YU Huan1,KAN Ai-ke2,3,HUANG Hong2,HE Jie2   

  1. (1.College of Earth Science, Chengdu University of Technology, Chengdu 610059, China; 2. College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China; 3. Research Center for Human Geography of Tibetan Plateau and Its Eastern Slope, Key Research Base of Humanities and Social Sciences of Colleges in Sichuan Province,Chengdu 610059,China)

  • Online:2023-07-20 Published:2023-07-21

摘要: 岷江上游河流水系的结构特征与复杂地貌环境构建了山区独特的水生态与水环境基础,从而塑造了流域聚落特殊的分布规律。研究分别通过河流邻近距离、河道剖面的海拔变化、集水流域等级以及河流水系发育的复杂程度,展开对岷江上游聚落分布的平面形态、垂直变化、类型分布和空间分异的分析。并利用地理探测器揭示岷江上游水文环境耦合地貌特征影响山区聚落分布的作用机制。研究结果如下:(1)聚落具有附主干河流呈“线状”分布的特征;总体上聚落随岷江支流河道海拔升高数量降低,但在不同支流上具有一定差异。岷江干流沿线聚落随河道剖面海拔升高呈现“U型”分布特征,聚落集中分布在海拔873~1 588 m和1 877~3 369 m的河道两侧;不同民族类型聚落的分布具有明显的集水区等级指向性,如1级集水区仅藏族聚落分布,而汉族聚落几乎全部分布于10级集水区;聚落密度总体随流域水系分维数升高而增大,且在不同支流流域上具有不同空间分异规律。(2)地理探测器表明河流水系密度、水系分维数、海拔高程、地形起伏度是影响岷江上游聚落分布的主控因子,且具有显著的非线性交互增强效应。(3)通过阶地发育、孕灾风险、气候环境和地貌景观特征的讨论,揭示了岷江上游水文特征与地貌环境耦合形成的生产生活环境被流域居民适应性选择和利用,从而形成河流水系影响聚落分布的内部机制。

Abstract: The structural characteristics of river system and complex geomorphic environment in the upper reaches of Minjiang River construct the unique water ecology and water environment foundation in mountainous areas, thus shaping the special distribution law of watershed settlements. The study analyzed the plane shape, vertical change, type distribution and spatial differentiation of settlement distribution in the upper reaches of Minjiang River through the adjacent distance of the river, the altitude change of river profile, the grade of catchment basin and the complexity of river system development. The geographic detector is used to reveal the mechanism of hydrological environment coupling geomorphic characteristics affecting the distribution of settlements in mountainous areas in the upper reaches of Minjiang River. The results are as follows: (1) the settlement has the characteristics of “linear” distribution attached to the main river; In general, the number of settlements decreases with the increase of the elevation of Minjiang River tributaries, but there are some differences in different tributaries. The settlements along the main stream of Minjiang River show “U-shaped” distribution characteristics with the increase of river profile altitude. The settlements are concentrated on both sides of the river at an altitude of 873-1 588 m and 1 877-3 369 m; The distribution of settlements of different ethnic groups has obvious catchment level directivity. For example, only Tibetan settlements are distributed in level 1 catchment area, while almost all Han settlements are distributed in level 10 catchment area; The overall settlement density increases with the increase of fractal dimension of watershed water system, and has different spatial differentiation laws in different tributary watersheds. (2) The geographic detector shows that the density of river water system, fractal dimension of water system, altitude and topographic relief are the main control factors affecting the settlement distribution in the upper reaches of Minjiang River, and have significant nonlinear interactive enhancement effect. (3) Through the discussion of terrace development, disaster risk, climate environment and geomorphic landscape characteristics, it is revealed that the production and living environment formed by the coupling of hydrological characteristics and geomorphic environment in the upper reaches of Minjiang River is adaptively selected and utilized by the basin residents, thus forming the internal mechanism of river water system affecting settlement distribution.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[2] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[3] 陈炳. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, , (): 0 .
[4] 韦胜 徐建刚 马海涛. 长三角高铁网络结构特征及形成机制[J]. 长江流域资源与环境, , (): 0 .
[5] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, , (): 0 .
[6] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .
[7] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548 -2557 .
[8] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[9] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[10] 孔锋, 方建, 孙劭, 王品, 吕丽莉, . 基于超阈值取样的中国不同重现期降雨强度空间分异特征及强降雨变化模态(1961~2016年)[J]. 长江流域资源与环境, 2019, 28(01): 144 -156 .