长江流域资源与环境 >> 2024, Vol. 33 >> Issue (1): 78-86.doi: 10.11870/cjlyzyyhj202401007

• 自然资源 • 上一篇    下一篇

湖库滨岸带固碳潜力评估——以沙河水库为例

曲盈豪1,2,张京2,季雨来2,张帅2,黄佳聪2*,吴太夏1*
  

  1. (1. 河海大学地球科学与工程学院,江苏 南京 211100;2. 中国科学院南京地理与湖泊研究所中国科学院流域地理学重点实验室,江苏 南京 210008)
  • 出版日期:2024-01-20 发布日期:2024-02-01

Estimating Carbon Sequestration Potential in Riparian Areas of Lakes and Reservoirs: An Example from Shahe Reservoir

QU Ying-hao1,2,ZHANG Jing2,JI Yu-lai2,ZHANG Shuai2,HUANG Jia-cong2,WU Tai-xia1   

  1. (1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China; 2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)
  • Online:2024-01-20 Published:2024-02-01

摘要: 湖库滨岸带生态系统土地利用组成复杂,其固碳潜力受土地管理措施影响显著,科学评估其碳储量及固碳潜力是实现碳中和的关键步骤。以沙河水库滨岸带为研究对象,基于InVEST模型构建了滨岸带碳储量的网格化估算模型,模拟了耕作方式优化、施肥方式优化和茶树混种等管理措施下的滨岸带碳储量及固碳潜力。结果表明:2022年,沙河水库滨岸带碳储量为3.25×105 t(9 961 t/km2),其中林地、农田和茶园碳储量分别占总碳储量的33.24%、24.34%和8.62%;耕作方式优化的固碳潜力提升效果最好(22 357 t)。

Abstract: The riparian areas of lakes and reservoirs with diverse land use types have a large fluctuation of carbon sequestration potential affected by land management strategies. An accurate estimation of carbon storage and sequestration potential is a critical step for carbon neutrality practices. The carbon-storage estimation has been widely implemented in forest and farm land ecosystem, but has been rarely investigated for the riparian areas of lakes and reservoirs. To quantify the carbon storage of the riparian areas of lakes and reservoirs, this study selected the riparian areas of Shahe Reservoir (surface water area of 12 km2 and mean water depth of 7 m) in a mountain area of eastern China as the study area. A raster-based model was developed to estimate carbon storage based on the InVEST model, widely used in case studies across the world. The estimated results were comparable with those from previous publications, implying the reasonability of the model. The developed model was then used to investigate the response of carbon storage and sequestration potential to land management strategies, such as optimization of cultivation and fertilization, and mixed planting. Our investigation results revealed that the riparian areas of Shahe Reservoir had a total carbon storage of 3.25×105 t (i.e., 9 961 t/km2) in 2022. Forests, farmlands and tea lands contributed to 33.24%, 24.34% and 8.62% of the total carbon storage. Cultivation optimization had the largest potential in carbon sequestration (22 357 t). Our study demonstrated the significant advantage of the developed raster-based model in estimating carbon storage, and can be potentially used in other lakes and reservoirs via parameter measurements. However, the developed model also included considerable model uncertainties, which required significant efforts to minimize. For example, the parameter of carbon density was a critical and sensitive parameter in the developed model, but demonstrated a large variation among different land use types. Therefore, further work is needed to improve the accuracy of model input data.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 刘帅 何 青 谢卫明 郭磊城 沈芳. 近15年来长江口控制站徐六泾悬沙变化特征研究[J]. 长江流域资源与环境, , (): 0 .
[6] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[7] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[8] 李佳佳 贺新光 卢希安. 长江流域月降水的EEMD多时间尺度遥相关分析[J]. 长江流域资源与环境, , (): 0 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 罗若愚, 钟易霖. 成都市社会空间结构演变研究(2000~2010)[J]. 长江流域资源与环境, 0, (): 768 -782 .