长江流域资源与环境 >> 2024, Vol. 33 >> Issue (2): 409-423.doi: 10.11870/cjlyzyyhj202402015

• 农业发展 • 上一篇    下一篇

中国种植业碳补偿率时空演变与发展潜力

董蕊1,伍国勇2,高强1*   

  1. (1.中国海洋大学管理学院,山东 青岛 266100;2.贵州大学西部现代化研究院,贵州 贵阳 550025)
  • 出版日期:2024-02-20 发布日期:2024-03-06

Spatiotemporal Evolution and Development Potential of Carbon Compensating Rate of Planting Industry in China

DONG Rui1,WU Guo-yong2,GAO Qiang1   

  1. (1. College of Management, Ocean University of China, Qingdao 266100, China; 2. Western Modernization Research Institute, Guizhou University, Guiyang 550025, China)
  • Online:2024-02-20 Published:2024-03-06

摘要: 充分发挥种植业系统的碳补偿潜力,有助于“碳中和”战略目标的实现。在对2006~2020年中国31个省(市、自治区)种植业碳补偿率测度基础上,分析其总体演变、区域差异及空间关联性,并将系统动力学SD仿真模型纳入分析框架,对中国种植业碳补偿发展潜力进行系统仿真分析。结果表明:(1)中国种植业碳补偿率整体大于1,总体呈波动式上升趋势,平均水平在5.3左右。(2)种植业碳补偿率区域间差异较大,具体表现为东北地区>西部地区>全国平均水平>东部地区>中部地区。省域层面碳补偿水平参差不齐,差值高达11.60。(3)从时间维度来看,辽宁省、山东省、河北省、山西省、四川省、云南省和贵州省碳补偿水平显著提高,而北京市碳补偿水平有下降趋势。(4)不同情境下种植业碳补偿潜力变化幅度不同,碳补偿率按照保障粮食安全发展、常规发展、综合发展和强化节能减排发展的顺序从低到高呈现逐年上升趋势,强化农资投入发展情境下碳补偿率则出现逐年下降趋势。据此,提出优化种植业结构,促进区域差异化发展,建立与农业污染物减排相关的财政支持体系,制定合理有效的减碳增汇发展政策等建议,为全面发挥种植业碳补偿能力,推进社会整体碳均衡提供施政参考。

Abstract: The complete utilization of carbon compensation in the plantation system can facilitate the realization of a "carbon neutral" strategy. The study examined the spatiotemporal evolution of the carbon compensating rate in the plantation industry across 31 provinces (municipalities and autonomous regions) of China from 2006 to 2020. The regional differences, spatial correlation, and the impact of social, economic, environmental, and developmental factors were investigated. The analysis framework incorporated a system dynamics (SD) simulation model to assess the carbon-compensating potential of the plantation industry. The results showed that: (1) China's plantation industry exhibited a carbon compensating rate consistently above 1, with an overall fluctuating upward trend and an average level of around 5.3. (2) The carbon compensating rate of the plantation industry exhibited significant regional disparities, with the highest rate observed in the northeast region, followed by the western region, the national average, the eastern region, and the central region. At the provincial level, there was considerable variations in the level of carbon compensation, with a maximum difference of 11.60. (3) In terms of temporal changes, the carbon compensating level in Liaoning Province, Shandong Province, Hebei Province, Shanxi Province, Sichuan Province, Yunnan Province, and Guizhou Province had experienced a significant increase. However, it was worth noting that Beijing City had shown a decreasing trend in the carbon compensating level. (4) The carbon compensating potential of the plantation industry exhibited variations across different scenarios. The carbon offset rate showed an increasing trend from low to high in the following scenarios: ensuring food security development, conventional development, integrated development, and enhanced energy conservation and emission reduction development. However, the carbon compensating rate in the enhanced agricultural input development scenario demonstrated a decreasing trend. Based on these findings, the following recommendations were proposed as to optimize the structure of the plantation industry, to promote differentiated regional development, to establish a financial support system related to the reduction of agricultural pollutants, and to formulate reasonable and effective policies for the development of carbon reduction and sink enhancement. These recommendations support the utilization of the plantation industry's carbon compensation capacity and contribute to achieving a balanced carbon footprint in society.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[3] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[4] 文高辉 杨钢桥. 耕地细碎化对农地整治农户土地权属调整意愿的影响研究[J]. 长江流域资源与环境, , (): 0 .
[5] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[6] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[7] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[8] 畅华仪, 张俊飚, 何可, . 技术感知对农户生物农药采用行为的影响研究[J]. 长江流域资源与环境, 2019, 28(01): 202 -211 .
[9] 邢璐平, 方斌, 向梦杰, . 基于GWR模型的江苏省耕地集约利用水平时空变化特征及影响因素[J]. 长江流域资源与环境, 2019, 28(02): 376 -386 .
[10] 李佳佳 贺新光 卢希安. 长江流域月降水的EEMD多时间尺度遥相关分析[J]. 长江流域资源与环境, , (): 0 .