长江流域资源与环境 >> 2024, Vol. 33 >> Issue (5): 1089-1098.doi: 10.11870/cjlyzyyhj202405016

• 生态环境 • 上一篇    下一篇

1978—2016年青藏高原湖冰物候时空变化特征及其影响因素分析

张克新1,赵莉1,汪田归1,曹立国2*,彭娇婷1,杜建雄1,纪燕3   

  1. (1 .贵州财经大学管理科学与工程学院,贵州 贵阳550025;2. 陕西师范大学地理科学与旅游学院,陕西 西安 710119;3贵州财经大学科研处,贵州 贵阳550025)
  • 出版日期:2024-05-20 发布日期:2024-05-29

Lake Ice Phenology Variations and Influencing Factors in the  QinghaiXizang Plateau During 1978-2016

ZHANG Ke-xin1, ZHAO Li1,WANG Tian-gui1,CAO Li-guo2,PENG Jiao-ting1,DU Jian-xiong1, JI Yan3   

  1. (1.School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025,China;2.School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119,China; 3.Research Office, Guizhou University of Finance and Economics,Guiyang 550025,China) 
  • Online:2024-05-20 Published:2024-05-29

摘要: 湖冰物候是反映气候变化的灵敏指示器。基于青藏高原126个湖泊1978~2016年湖冰物候数据集和气象数据,对青藏高原湖泊湖冰物候的时空变化特征及其影响因素进行分析。结果表明:(1)在全球变暖背景下,青藏高原1978~2016年湖冰物候指数的变化特征呈现出结冰时间显著推迟、融化时间显著提前、冰期显著缩短的变化趋势。(2)青藏高原湖冰物候指数变化趋势的空间差异较为显著,其中大多数湖泊的结冰时间、融化时间和冰期持续时间呈现出显著提前、推后和缩短趋势,仅有少数湖泊的湖冰物候指数变化趋势不显著。(3)青藏高原湖冰物候指数空间分布差异显著,从南到北呈现出湖泊结冰日期提前、融冰日期推迟、冰期持续时间延长的分布模式。(4)温度是影响湖冰物候指数的关键因素;降水、纬度和湖泊面积则对开始日结冰日和完全结冰日具有显著影响;开始融化日和完全融化日则主要受到风速、纬度和海拔的共同作用;而冰期和完全结冰期的长短则主要受到风速、降水、纬度和海拔的影响。因此,青藏高原湖冰物候的变化是气候变化和湖泊自身因素相互作用所导致的。

Abstract: The change in lake ice phenology is a sensitive indicator reflecting climate change.Lake ice phenology over the QinghaiXizang Plateau (QXP) is however rarely observed and recorded.The numerous lakes in the QTP have significant functions within the climate system, influencing the balance of water and energy in the region, and are additionally viewed as key indicators of local climate change.Based on lake ice phenology dataset from 126 lakes on the QXP and meteorological data, this article analyzes the changes of lake ice phenology and influencing factors in the QXP from 1978 to 2016.Some conclusions can be drawn as follows.(1) The freezeup start (FUS) and freezeup end (FUE) of lake ice appears in midNovember, and midDecember, respectively.The time of breakup start (BUS) and breakup end (BUE) of lake ice is relatively dispersed, and appears in early April and early June, respectively.The average freezing duration (IceD, between BUE and FUS), complete freezing duration (CID, between BUS and FUE) were 168 days and 114 days, respectively.(2) The spatial difference of the change trend of the lake ice phenology in the QXP is relatively significant.The freezing time, melting time and duration of the ice period of most lakes show an obvious trend of advancing, delaying and shortening, while some lakes have no obvious trend of change.(3) The spatial distribution characteristics of lake ice phenology in the QXP have obvious regional differences, but the spatial distribution characteristics of each index are relatively similar, that is, there is a spatial distribution pattern of early lake ice formation date, delayed ice melting date, and extended ice period duration from the south to the north.(4) The spatiotemporal variability of lake ice phenology is the result of the combined effects of climate change and lake conditions.Temperature is a key factor affecting lake ice phenology, while precipitation, latitude, and lake area are the main factors influencing the dates of iceon and iceoff.On the other hand, the dates of beginning and complete ice melting are mainly influenced by wind speed, latitude, and altitude.Wind speed, precipitation, latitude, and altitude are the main factors affecting the duration of the ice period and complete ice cover.In summary, under the background of global warming, the formation, melting, and duration of the ice period in the lakes on the QXP are undergoing significant changes.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[2] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[3] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[4] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[5] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[6] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[7] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[8] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[9] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[10] 熊美华, 邵科, 赵修江, 朱滨, 史方. 长江中上游圆口铜鱼群体遗传结构研究[J]. 长江流域资源与环境, 2018, 27(07): 1395 .