长江流域资源与环境 >> 2024, Vol. 33 >> Issue (7): 1589-1598.doi: 10.11870/cjlyzyyhj202407018

• 生态环境 • 上一篇    

贵州区域茶园土壤有机碳空间分布的异质性及其主导因素

辛宜静1,2,刘方1,2*,陈祖拥2,刘元生2,朱健1,2   

  1. (1.贵州大学资源与环境工程学院, 贵州 贵阳 550025; 2. 贵州喀斯特环境生态系统教育部野外科学观测研究站, 贵州 贵阳 550025)
  • 出版日期:2024-07-20 发布日期:2024-07-18

Spatial Distribution and Influencing Factors of Soil Organic Carbon in Tea Plantations in Guizhou Province

XIN Yi-jing1,2, LIU Fang1,2, CHEN Zu-yong2, LIU Yuan-sheng2, ZHU Jian1,2   

  1. (1. College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China; 2. Field Scientific Observation and Research Station of Guizhou Karst Environmental Ecosystem, Ministry of Education, Guiyang 550025 China)
  • Online:2024-07-20 Published:2024-07-18

摘要: 随着茶园面积的不断扩大,了解区域土壤有机碳的空间分布规律及其影响因素,对建设碳汇茶园具有重要的指导意义。通过对贵州省区域茶园及周边林地和灌草地进行土壤样品采集,采用GIS聚类分析和地理探测器分析方法,探讨了影响茶园不同土层土壤有机碳含量空间分异性的主导因素。结果表明:贵州省区域茶园土壤有机碳含量范围为5.61~80.92 g·kg-1,其空间分布属于中等程度变异(变异系数为0.47);林地、茶园、灌草地3个区域的土壤有机碳的平均含量分别为49.34、29.80、19.65 g·kg-1;茶园土壤有机碳含量随土层深度增加而降低。利用地理探测器模型定量评估,发现海拔是影响贵州区域茶园土壤有机碳空间异质性的主导因素,海拔高度的变化明显地影响区域温度及降雨,表层土壤有机碳的空间分布主要受温度的影响,而中下层土壤有机碳的空间分布主要受到降雨的影响。可见,通过调控茶园土壤水热条件,能有效地增加茶园土壤的固碳能力及提升区域茶园的碳汇效率。

Abstract: With the continuous expansion of tea plantation area, understanding the spatial distribution of soil organic carbon and its influencing factors is of great significance in guiding the construction of carbon sink tea plantations. In this study, we investigated the dominant factors affecting the spatial variability of soil organic carbon content in different soil layers of tea plantations. Soil samples from regional tea plantations and the surrounding woodlands and scrub grasslands in Guizhou Province were collected. GIS cluster analysis and the geographical detector model analysis were adopted in the study. The results showed that the soil organic carbon content of regional tea plantations ranged from 5.61 to 80.92 g·kg-1. The spatial distribution was moderately variable (coefficient of variation 0.47). The average content of soil organic carbon was 49.34, 29.80, and 19.65 g·kg-1 in the three regions of woodland, tea plantation, and scrub grassland, respectively. The soil organic carbon content of tea plantations decreased with the increase of soil depth. Quantitative assessment revealed that elevation was the dominant factor influencing the spatial heterogeneity of soil organic carbon in tea plantations. The changes in elevation significantly affected regional temperature and rainfall. The spatial distribution of soil organic carbon in the surface layer was mainly influenced by temperature, while rainfall was the main influencing factor for the middle and lower soil layers. It was concluded that the carbon sequestration capacity and the carbon sink efficiency could be effectively increased by regulating the soil hydrothermal conditions in tea plantations.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许艳|濮励杰|张润森|朱明. 近年来江苏省海岸带土地利用/覆被变化时空动态研究[J]. 长江流域资源与环境, 2012, 21(05): 565 .
[2] 秦文浩, 夏琨, 叶晓东, 纪风强. 竺山湾流域河湖系统污染物总量控制研究[J]. 长江流域资源与环境, 2016, 25(05): 822 -829 .
[3] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[4] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[5] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[6] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[7] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[8] 张大鹏, 曹卫东, 姚兆钊, 岳洋, 任亚文. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(07): 1365 .
[9] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[10] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .